Photocatalytic Decolorization of Textile Effluent by using Synthesized Nano particles

Narayanappa Madhusudhana¹, Kambalagere Yogendra¹, Kittappa M. Mahadevan²

¹Department of P.G studies and Research in Environmental Science, Kuvempu University, JnanaSahyadri, Shankaraghatta, Shivamogga, Karnataka, India.
²Department of Chemistry, Kadur P.G Center, Kuvempu University, Kadur, Karnataka, India.

Received: 08.10.2014 Accepted: 03.11.2014

Abstract

The textile industry consumes considerable amounts of water during the dyeing and finishing operations. Dyes extensively used are found to be toxic and considered to be resistant to biodegradation. In this work, a detailed investigation was done on photocatalytic degradation for selected textile effluent. The two different nano particles, CaAl₂O₄-I was synthesized by using fuel urea and CaAl₂O₄-II by acetamide by solution combustion method. These nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Micrograph (SEM) and UV absorbance spectroscopy. The average size was found to be 39 nm for CaAl₂O₄-I and 42 nm for CaAl₂O₄-II. The band gap of the nano particle CaAl₂O₄-I was found to be 2.8 eV and CaAl₂O₄-II was 2.7 eV. These nano particles were tested for the photocatalytic degradation by varying parameters such as catalyst concentration, pH and dye concentration. Also, the efficiency of the synthesized nano particles were compared with the procured TiO₂ of size < 25 nm.

Keywords: CaAl₂O₄; Degradation; Nano particles; Photocatalyst; Textile effluent; TiO₂.

1. INTRODUCTION

Dyes are being the most used coloured products in textile industries. These reactive dyes are not easily removable by conventional treatment methods due to their stability and non biodegradable nature. The coloured wastewaters released by textile industry effluent pose a potential environmental hazard to ecosystem and must be treated before being discharged into the natural water bodies. Until now there is no such economical and technically fit solution for the effective degradation and mineralization of the hazardous, organic compounds present in textile industry effluents is available. Various methods like physical, biological and chemical are being explored and employed however they have their own limitations as the physical methods like adsorption on activated carbon, reverse osmosis etc. do not lead to complete mineralization, rather they simply transfer the pollutants from one phase to another causing secondary pollution (Manjusha and Pragati, 2014; Madhusudhana et al. 2013). Biological treatment methods have proven to be ineffective not only due to the resistance of azo dyes to aerobic degradation (Mohammad et al. 2005) but also due to the formation of aromatic amines which are carcinogenic (Swati et al. 2012).

Therefore from the last decade, focus has been mainly on the treatment technologies that lead to the complete destruction of the dye molecules. Among these treatments advanced oxidation processes (AOPs) has emerged as a powerful remediation treatment to destroy refractory pollutants in water. Among all the AOPs heterogeneous photocatalysis has been found to be the most promising treatment process for the degradation of various dyes at lab scale (Malato et al. 2002). But to extend this process to treat real textile industrial effluent, more focused and detailed study is the need of current research and development activities. Also it is so advantageous that, its ability to photosensitize the complete mineralization of widerange of organic pollutants without production of harmful by-products.

*Kambalagere Yogendra Tel.no:+919945352191
E-mail: madhuvdt@gmail.com
Among the metal oxide photocatalysts, TiO$_2$ is the most studied nano particle and frequently reported as an efficient photocatalyst in degrading many textile dyes. Many investigations have been carried out under UV radiation, since TiO$_2$ photocatalysts show relatively high activity and chemical stability under UV light (Yeber et al. 2000) and absorbs only small portion of solar spectrum in the UV region. On the other hand, ZnO has approximately the same band gap energy (3.2 eV) as TiO$_2$ and its photocatalytic capacity has been anticipated to be similar to that of TiO$_2$. Further, some studies have confirmed that ZnO exhibits more efficiency than TiO$_2$. The biggest advantage of ZnO is that, it absorbs over a larger fraction of the solar spectrum than TiO$_2$ (Behnajady et al. 2006; Lizarra et al. 2002; Khodja et al. 2001; Gouvea et al. 2000).

Similar studies have reported in our laboratory on different dyes (Madhusudhana et al. 2012; Madhusudhana et al. 2012; Gopalappa et al. 2012; Gopalappa et al. 2012; Madhusudhana et al. 2011; Yogendra et al. 2011).

So, in continuation of our study, TiO$_2$ of size < 25 nm has been procured from sigma-aldrich, Mumbai. CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II nano particles were synthesized in the laboratory by Ca(NO$_3$)$_2$·4H$_2$O and Al(NO$_3$)$_3$·9H$_2$O using fuels urea and acetamide, because they seem to be the convenient fuels which are easily available for the synthesis of the CaAl$_2$O$_4$ nano particles. The coloured textile effluent was collected form one of the nearby textile industries. The chemicals like calcium nitrate Ca(NO$_3$)$_2$·4H$_2$O (99%, AR), aluminium nitrate Al(NO$_3$)$_3$·9H$_2$O (99%, A. R.), urea (NH$_2$ CO NH$_2$) (99%, AR) and acetamide (CH$_3$CONH$_2$) (99%, AR) were obtained from Hi-media chemicals, Mumbai and used as received. The UV-VIS single beam spectrophotometer 119 (Systronics) has been used for recording absorbance at λ_{max}.

2. EXPERIMENTAL DETAILS

2.1 Materials and Reagents

The TiO$_2$ nano particle of size < 25 nm was procured from sigma-aldrich, Mumbai. CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II nano particles were synthesized in the laboratory by Ca(NO$_3$)$_2$·4H$_2$O and Al(NO$_3$)$_3$·9H$_2$O using fuels urea and acetamide, because they seem to be the convenient fuels which are easily available for the synthesis of the CaAl$_2$O$_4$ nano particles. The coloured textile effluent was collected form one of the nearby textile industries. The chemicals like calcium nitrate Ca(NO$_3$)$_2$·4H$_2$O (99%, AR), aluminium nitrate Al(NO$_3$)$_3$·9H$_2$O (99%, A. R.), urea (NH$_2$ CO NH$_2$) (99%, AR) and acetamide (CH$_3$CONH$_2$) (99%, AR) were obtained from Hi-media chemicals, Mumbai and used as received. The UV-VIS single beam spectrophotometer 119 (Systronics) has been used for recording absorbance at λ_{max}.

$$3\text{Ca(NO}_3\text{)}_2 + 6\text{Al(NO}_3\text{)}_3 + 20\text{NH}_2\text{CONH}_2 \rightarrow 3\text{CaAl}_2\text{O}_4 + 20\text{CO}_2 + 40\text{H}_2\text{O} + 32\text{N}_2$$

2.2 Synthesis of calcium aluminate nano particle by solution combustion method

The solution combustion process is an exothermic redox (oxidation and reduction reactions taking place simultaneously) reaction between an oxidizer and a fuel. When the heat is more evolved than the heat required for the reaction, the system becomes self-sustained. Also the exothermicity of such reactions takes the system to a high temperature. Hence, this process, popularly known as self-propagating high temperature synthesis, which is also called fire synthesis. The interesting feature of the process is that the sample once ignited continues to burn to consume itself (Mimani and Patil, 2001).

The stoiχiometry or the equivalence ratio (ϕ, O/F), at which the total combustion reaction takes place is very important and crucial. Combustion may not take place at all if the stoichiometry is not maintained. The calculation of the equivalence ratio is based on balancing the oxidizing (O) and reducing valency (F) of the reactants. The energy released by the combustion of the redox mixtures will be maximum when the equivalence ratio is (ϕ, O/F), unity (O is the total oxidizing and F the total reducing valency of the components). Here, the elements C, H and metal ions are considered as reducing species (e.g., C = +4, H = +1, M$^{2+}$ = +2, M$^{3+}$ = +3, etc.). Oxygen is considered as oxidizer with a valency of –2. Nitrogen is considered to have zero valency (Deshpande et al. 2004).

2.2.1 Synthesis of CaAl$_2$O$_4$-I

The stoiχiometric amounts of Ca(NO$_3$)$_2$·4H$_2$O (3.54g) and Al(NO$_3$)$_3$·9H$_2$O (11.255g) were dissolved in minimum quantity of water along with Urea (24g) in a silica crucible (with volume of 100 cm3). The resulting mixture was introduced into the muffle furnace which was preheated to 600°C. Initially the solution foils boils and undergoes dehydration followed by decomposition with the evolution of gases (N$_2$ and CO$_2$). Then, it burns to yield voluminous and foamy homogeneous residue (Nesaraj et al. 2007). Thus, combustion reaction was completed within a few minutes. The foam was then transferred in an agate mortar with a pestle to obtain fine particles. The combustion reaction for the synthesis of CaAl$_2$O$_4$-I by the redox mixture method (urea) can be written as:

$$3\text{Ca(NO}_3\text{)}_2 + 6\text{Al(NO}_3\text{)}_3 + 20\text{NH}_2\text{CONH}_2 \rightarrow 3\text{CaAl}_2\text{O}_4 + 20\text{CO}_2 + 40\text{H}_2\text{O} + 32\text{N}_2$$
The equivalence ratio \((\phi_e)\) in the above case is calculated as follows:

\[
\text{OV of } \text{Ca(NO}_3\text{)}_2, \quad 1\text{Ca} = +2, \quad 2\text{N} = 0, \quad 6\text{O} = -12, \quad \text{Total} = +2 -12 = -10.
\]

\[
\text{RV of } \text{NH}_2\text{CONH}_2, \quad 1\text{C} = +4, \quad 4\text{H} = +4, \quad 2\text{N} = 0, \quad 1\text{O} = -2, \quad \text{Total} = +4+4-2 = +6.
\]

\[
(\phi_e, \text{O/F}) = 10/6 = 1.66 \text{ i.e., for every one mole of Ca(NO}_3\text{)}_2 1.66 \text{ moles of urea required.}
\]

\[
\text{OV of } \text{Al(NO}_3\text{)}_3, \quad 1\text{Al} = +3, \quad 3\text{N} = 0, \quad 9\text{O} = -18, \quad \text{Total} = +3 -18 = -15.
\]

\[
\text{RV of } \text{NH}_2\text{CONH}_2, \quad 1\text{C} = +4, \quad 4\text{H} = +4, \quad 2\text{N} = 0, \quad 1\text{O} = -2, \quad \text{Total} = +4+4-2 = +6.
\]

\[
(\phi_e, \text{O/F}) = 15/6 = 2.5 \text{ i.e., for every one mole of Al(NO}_3\text{)}_3 2.5 \text{ moles of urea required.}
\]

For the synthesis of CaAl\(_2\)O\(_4\)-I the total number of moles of urea required is: 1.66+2.5 = 4.16 mole.

Table 1. Stoichiometric proportion used for the synthesis of CaAl\(_2\)O\(_4\)-I

<table>
<thead>
<tr>
<th>Mass of Ca(NO(_3))(_2) 4 H(_2)O</th>
<th>Mass of Al(NO(_3))(_3) 9 H(_2)O</th>
<th>Mass of NH(_2)CONH(_2)</th>
<th>Mass of Synthesized CaAl(_2)O(_4)-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.54g</td>
<td>11.255g</td>
<td>24g</td>
<td>2.98g</td>
</tr>
</tbody>
</table>

2.2.2 Synthesis of CaAl\(_2\)O\(_4\)-II

The stoichiometric amounts of Ca(NO\(_3\))\(_2\).4H\(_2\)O (6.49g) and Al(NO\(_3\))\(_3\).9H\(_2\)O (20.63g) were dissolved in a minimum quantity of water along with acetamide (5.90g) in a silica crucible (with a volume of 100 cm\(^3\)). The resulting mixture was introduced into the muffle furnace which was preheated to 600°C. Initially the solution foils boils and undergoes dehydration followed by decomposition with the evolution of gases (N\(_2\) and CO\(_2\)). Then, it burns to yield voluminous and foamy homogeneous residue (Nesaraj et al. 2007). Thus, combustion reaction was completed within a few minutes. The foam was then lightly ground in an agate mortar with a pestle to obtain fine particles. The combustion reaction for the synthesis of CaAl\(_2\)O\(_4\)-II by the redox mixture method (acetamide) can be written as:

\[
11\text{Ca(NO}_3\text{)}_2 + 22(\text{Al(NO}_3\text{)}_3 + 40\text{CH}_3\text{CONH}_2 \rightarrow 11\text{CaAl}_2\text{O}_4 + 80\text{CO}_2 + 100\text{H}_2\text{O} + 64\text{ N}_2
\]

The equivalence ratio \((\phi_e)\) in the above case is calculated as follows:

\[
\text{OV of Ca(NO}_3\text{)}_2, \quad 1\text{Ca} = +2, \quad 2\text{N} = 0, \quad 6\text{O} = -12, \quad \text{Total} = +2 -12 = -10.
\]

\[
\text{RV of CH}_3\text{CONH}_2, \quad 2\text{C} = +8, \quad 5\text{H} = +5, \quad 2\text{N} = 0, \quad 1\text{O} = -2, \quad \text{Total} = +8+5-2 = +11.
\]

\[
(\phi_e, \text{O/F}) = 10/11 = 0.909 \text{ i.e., for every one mole of Ca(NO}_3\text{)}_2 0.909 \text{ mole acetamide required.}
\]

\[
\text{OV of Al(NO}_3\text{)}_3, \quad 1\text{Al} = +3, \quad 3\text{N} = 0, \quad 9\text{O} = -18, \quad \text{Total} = +3 -18 = -15.
\]

\[
\text{RV of CH}_3\text{CONH}_2, \quad 2\text{C} = +8, \quad 5\text{H} = +5, \quad 2\text{N} = 0, \quad 1\text{O} = -2, \quad \text{Total} = +8+5-2 = +11.
\]

\[
(\phi_e, \text{O/F}) = 15/11 = 1.36 \text{ i.e., for every one mole of Al(NO}_3\text{)}_3 1.36 \text{ mole acetamide required.}
\]

For the synthesis of CaAl\(_2\)O\(_4\)-II the total number of moles of acetamide required is: 0.909+1.36= 2.269 mole.
Table 2. Stoichiometric proportion used for the synthesis of CaAl$_2$O$_4$-II

<table>
<thead>
<tr>
<th>Mass of Ca(NO$_3$)$_2$ 4 H$_2$O</th>
<th>Mass of Al(NO$_3$)$_3$ 9 H$_2$O</th>
<th>Mass of CH$_3$CONH$_2$</th>
<th>Mass of Synthesized CaAl$_2$O$_4$-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.49g</td>
<td>20.63g</td>
<td>5.90 g</td>
<td>4.34g</td>
</tr>
</tbody>
</table>

2.3 X-ray diffraction (XRD)

The powdered sample of CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II nano particles were examined by XRD and analysis was carried out on fresh sample to assess the purity of the expected phases and the degree of crystallization i.e., size, composition and crystal structure. XRD was performed by Rigakudiffractometer using Cu-K$_\alpha$ radiation (1.5406 Å) in a 0-20 configuration (Girase et al. 2011). According to the Debye Scherrer’s formula:

\[
D = \frac{K\lambda}{\beta \cos \theta} \quad \text{(Eq. 1)}
\]

Where

- \(D\) = Thickness of the crystallite
- \(K = 0.90\) the Scherrer’s constant (dependent on crystallite shape)
- \(\lambda\) = X-ray wavelength
- \(\beta\) = the peak width at half-maximum (FWHM)
- \(\theta\) = the Bragg diffraction angle

2.3.1 X-ray diffraction studies of CaAl$_2$O$_4$-I

The powdered sample of CaAl$_2$O$_4$-I nano particle was examined by XRD and analysis was carried out on fresh sample to assess the purity of the expected phases and the degree of crystallization i.e., size, composition and crystal structure. XRD was performed by Rigakudiffractometer using Cu-K$_\alpha$ radiation (1.5406 Å) in a 0-20 configuration.

According to the XRD the average crystallite size of CaAl$_2$O$_4$-I was found to be 39 nm.

2.3.2 X-ray diffraction studies of CaAl$_2$O$_4$-II

The powdered sample of CaAl$_2$O$_4$-II nano particle was examined by XRD and analysis was carried out on fresh sample to assess the purity of the expected phases and the degree of crystallization i.e., size, composition and crystal structure. XRD was performed by Rigakudiffractometer using Cu-K$_\alpha$ radiation (1.5406 Å) in a 0-20 configuration. According to the XRD the average crystallite size of CaAl$_2$O$_4$-II was found to be 42 nm.
2.4 Scanning Electron Micrograph (SEM)

In the present work powdered sample of CaAl\(_2\)O\(_4\)-I and CaAl\(_2\)O\(_4\)-II nano particles were examined by using SEM technique. The study of the surface of the nano particle gives valuable information about its internal structure.

2.4.1 SEM study of CaAl\(_2\)O\(_4\)-I

The SEM photograph shows crystal morphology which are tightly packed. The overlapping of the crystals can be clearly observed in the images. The enlarged image shows the particles are attached to each other (Fig. 3).

2.4.2 SEM study of CaAl\(_2\)O\(_4\)-II

The SEM study shows both the mixtures of crystal and plate like morphology, which are placed at irregular interval. Here both small and large plates can be observed. The large individual plates can be seen with the sharp edged structures (Fig. 4).

Fig. 3: SEM photograph of CaAl\(_2\)O\(_4\)-I

Fig. 4: SEM photograph of CaAl\(_2\)O\(_4\)-II
2.5 UV-absorption spectroscopy

Absorption spectra of the CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II metal oxide nano particles were recorded using UV-VIS spectrophotometer (Ocean Optics DH-2000) over the wavelength range 200-1200 nm at Nano Research Laboratory, Department of Nanotechnology, Kuvempu University. From this spectrum, it has been inferred that the nano particles have sufficient transmission in the entire visible and IR region. The band gap energy of the CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II nano particles was calculated using the following simple conversion equation. The band gap equation is calculated using the Planck’s equation as follows.

\[E = \frac{hc}{\lambda} \]

\(h = \text{Planck’s constant, } C = \text{Velocity of light (speed of light), } \lambda = \text{wavelength of light} \)

\(h = 4.135 \times 10^{-15} \text{ eV, } C = 3 \times 10^8 \text{ m/s, } \lambda = \text{--------} \times 10^{-9} \text{ nm} \)

Band gap energy (eV) = \(4.135 \times 10^{-15} \text{ eV} \times 3 \times 10^8 \times \frac{10^9}{\lambda} \)

\[\text{Band gap energy (eV)} = \left(\frac{1240}{\text{wavelength (nm)}} \right) \]

(\ref{eq:2}) \[\text{\quad \quad \q
100000 to 130000 lux (recorded by using TES 1332A digital Lux meter). The experiments were carried out between 10 am to 1 pm and 3 ml of raw effluent was diluted 1000 ml of potable water to make the aqueous solution of 3% concentration. In all photocatalytic experiments, 100 ml of 3% textile effluent solution was taken in 100 ml Borosil beakers. The UV-VIS spectrophotometer 119 (Systronics) was used for the determination of absorbance in the range of 200 to 800 nm. The λ_{max} of textile effluent was found to be 440 nm. A known amount of dosage (0.5 g/100 ml) of the different nano particles; TiO$_2$, CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II were added to six different beakers containing textile effluent solution and the beakers were kept in the sunlight for photocatalytic activity. Further experiments were conducted based on the decolourization results obtained from the photocatalytic activity of the catalysts.

3.3 Effect of photocatalysts on photocatalytic decolourization of textile effluent

Blank experiments were performed under direct sunlight without the addition of catalysts and no decolourization was observed. A known concentration of TiO$_2$, CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II (0.5 g/100 ml) were added to six beakers containing textile effluent solution and kept in the sunlight for photocatalytic activity. The results showed that the nano particles (CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II) have exhibited higher photocatalytic activity than TiO$_2$.

![Photo 3: Rate of degradation of textile effluent at 120 minutes](image)

Photo 3: Rate of degradation of textile effluent at 120 minutes [(a)= textile effluent/TiO$_2$/CaAl$_2$O$_4$-I, (b)= textile effluent/TiO$_2$/CaAl$_2$O$_4$-II]

3.4 Photocatalytic experimental procedure: Study on photocatalytidecolourization of textile effluent using CaAl$_2$O$_4$I and CaAl$_2$O$_4$-II nano particles

In the second phase, the synthesized nano particles were continued for the photocatalytic degradation studies. Photocatalytic suspensions from 0.1 g, 0.2 g, 0.3 g up to 1 g were tested on the 100 ml textile effluent samples. The suspension pH values were adjusted by using NaOH/HCl solutions using pH meter. Before irradiation, photocatalyst suspension was stirred in the dark to ensure the adsorption equilibrium and was kept in sunlight for the photocatalytic decolourization. At an interval of 30 minutes the suspension was sampled and centrifuged (EBA-Hetlich) at 3000 rpm for 5 minutes to remove photocatalyst particles. The residual concentration of the solution samples were monitored by using UV-VIS spectrophotometer 119 (Systronics) at 440 nm. The experiments were conducted for different pH range from 2 to 11 in order to study the efficiency of the nano particles in Acidic, Alkaline and Neutral conditions. The data obtained from the photocatalytic degradation experiments were used to calculate the degradation efficiency ‘D’ (Eq. 3).
where, A_0 is the initial absorbance of dye solution A_t is absorbance at time 't'.

$$D = \left(\frac{A_0 - A_t}{A_0} \right) \times 100 \quad \cdots \text{(Eq. 3)}$$

Fig. 8: Effect of catalyst concentration on textile effluent at 120 minutes [textile effluent=3 % at pH=7, (a)=CaAl$_2$O$_4$-I, (b)=CaAl$_2$O$_4$-II,]

3.5 Effect of catalyst concentration on textile effluent

The effect of catalyst concentration on photocatalytic degradation was studied over a range of catalyst amount from 0.1 to 1 g/100 ml for the textile effluent. Both the synthesized nano particles have shown appreciable results. Where, CaAl$_2$O$_4$-I showed 93.99 % at 0.4 g/100 ml and CaAl$_2$O$_4$-II showed highest degradation of 94.51 % at 0.5 g /100 ml in 120 minutes (Fig. 8) (Photo 4). The increase in decolourization rate can be explained in terms of availability of active sites on the catalyst surface and sunlight penetration into the suspension as a result of increased screening effect and scattering of light. Further increase in the catalyst amount beyond the optimum dosage for all the nano particles, decreases the decolourization by some margin. This may be due to overlapping of adsorption sites as a result of overcrowding owing to collision with ground state catalyst (Subramani et al. 2007). Since the decolourization was most effective at 0.6g/100ml for CaAl$_2$O$_4$-I and 0.7 g /100 ml for CaAl$_2$O$_4$-II nano particle dosages, the following experiments were continued with same dosages.

Photo 4: Effect of catalyst concentration on textile effluent at 120 minutes [textile effluent=3% at pH=7, (a)=CaAl$_2$O$_4$-I, (b)=CaAl$_2$O$_4$-II]

3.6 Mechanism of the photocatalytic decolourization

The mechanism of photocatalytic activity of the used catalyst nano particle is predicted as follows. Under sunlight irradiation catalyst molecules get excited and transfer electron to the conduction band (Eq. 4). Electron in the conduction band of the catalyst can reduce molecular oxygen and produce the super oxide radical (Eq. 5). Molecular oxygen, adsorbed on the surface of the photocatalyst prevents the hole-electron pair recombination process (Di-Paola et al. 2003; Da-Silva and Faria, 2003). Recombination of hole-electron pair decreases the rate of photocatalytic degradation. This radical may form hydrogen peroxide or organic peroxide in the presence of oxygen and organic molecule (Eq. 6, 7, 8).

\[
\text{Nano particles} + h\nu \rightarrow (e_{\text{CB}} + h^+_{\text{VB}}) \quad \text{(Eq. 4)}
\]

\[
e_{\text{CB}} + O_2 \rightarrow O_2^- \quad \text{(Eq. 5)}
\]

\[
H_2O + O_2^- \rightarrow OOH^- + OH^- \quad \text{(Eq. 6)}
\]

\[
2OOH^- \rightarrow O_2 + H_2O_2 \quad \text{(Eq. 7)}
\]

\[
O_2^- + \text{textile effluent} \rightarrow \text{textile effluent -OO}^- \quad \text{(Eq. 8)}
\]

\[
OOH^- + H_2O + e_{\text{CB}} \rightarrow H_2O_2 + OH^- \quad \text{(Eq. 9)}
\]

\[
H_2O_2 + e_{\text{CB}} \rightarrow HO_2^- + OH^- \quad \text{(Eq. 10)}
\]

\[
H_2O_2 + O_2^- \rightarrow OH^- + OH^- + O_2 \quad \text{(Eq. 11)}
\]

\[
\text{OH}^-/O_2^-/\text{Nano particles}^+ + \text{textile effluent} \rightarrow \text{textile effluent decolourization} \quad \text{(Eq. 12)}
\]
Hydrogen peroxide can form hydroxyl radicals which are powerful oxidizing agents (Eq. 10, 11). The radicals produced are capable of attacking textile effluent molecules and decolourize them (Eq. 12).

3.7 Effect of pH on textile effluent

In order to study the effect of pH on the decolourization efficiency of CaAl$_2$O$_4$-I and CaAl$_2$O$_4$-II catalysts, the experiments were conducted at pH ranging from 2 to 11. The results showed that, pH significantly affected the decolourization efficiency (Fig. 9) (Photo 5). The decolourization rate of textile effluent for CaAl$_2$O$_4$-I, the decolourization increased from 88.50 % to 95.02 % from pH 2 to 8 and decreased to 93.31 % at pH 11 in 120 minutes for 0.4 g/100 ml and for CaAl$_2$O$_4$-II the decolourization of the effluent increased from 93.31 % to 95.71 % from pH 2 to 9 and decreased to 92.96% at 11 in 120 minutes for 0.5 g/100 ml. The maximum decolourization rate for all different nano particles was achieved at pH 8 and 9. As the collected effluent maybe having the anionic dyes which results in more efficient formation of hydroxyl radicals in alkaline medium. Excess of hydroxyl anions increases the formation of OH$^-$ radicals. These OH$^-$ radicals are the main oxidizing species responsible for photocatalytic decolourization (Noorjahan et al. 2003).

Above optimum pH, the decrease in decolourization efficiency can be explained on the basis of amphoteric nature of the catalysts. The catalyst surface becomes negatively charged for higher pH values, which causes the electrostatic repulsion between the catalyst and negatively charged dyes (Turchi et al. 1990).

3.8 Effect on different concentration of textile effluent

The initial concentration of textile effluent was varied from 3%, 6%, 9% and 12% to study the effect on different concentrations of textile effluent. The decolourization results obtained for CaAl$_2$O$_4$-I obtained 95.02%, 28.49%, 9.56% and 4.56% for the aqueous solution 3%, 6%, 9% and 12%. In the same way CaAl$_2$O$_4$-II resulted 95.71%, 16.77%, 9.56% and 4.60% for the following 3%, 6%, 9% and 12% textile effluent.
effluent concentrations (Fig. 10) (Photo 6). These series of experiments illustrated that the decolourization efficiency was inversely affected by the concentration. The decrease in the decolourization with increase in effluent concentration was ascribed to the equilibrium adsorption of dye on the catalyst surface which results in decrease in the active sites. This phenomenon results in the lower formation of OH• radicals which were considered as primary oxidizing agents of the organic dye (Mirkhani et al. 2009). According to Beer Lambert law, as the initial dye concentration increases, the path length of photons entering the solution decreases. This results in lower photon adsorption on the catalyst particles, and consequently decreases photocatalytic reaction rate (Byrappa et al. 2006).

3.9 Effect of sunlight irradiation on textile effluent

Sunlight irradiation generates the photons required for the electron transfer from the valence band to the conduction band of a semiconductor photocatalyst. The energy of a photon is related to its wavelength and the overall energy input to a photocatalytic process is dependent on the light intensity. Therefore, the effects of both intensity and wavelength are important. In the present study, the effect of the sunlight intensity was studied by keeping the constant wavelength (440 nm).

The The photocatalytic decolourization of diluted textile effluent (i.e. 3%) conducted under three different experimental conditions were examined, i.e., under sunlight alone, textile effluent/dark/catalyst and textile effluent/sunlight/catalyst for both the different catalysts. When textile effluent solution was exposed directly to the sunlight, the decolourization was found to be nil during the entire experiments.
The decolourization rate was found to increase with increase in irradiation time, for textile effluent/sunlight/CaAl\(_2\)O\(_4\)-I recorded 95.02% and textile effluent/dark/ CaAl\(_2\)O\(_4\)-I 16.29% was recorded. The textile effluent/sunlight/CaAl\(_2\)O\(_4\)-II achieved 95.71 % and textile effluent/dark/CaAl\(_2\)O\(_4\)-II 27.27 % was recorded with 120 minutes respectively (Fig. 11) (Photo 7). These results clearly showed that, decolourization occurs more efficiently in presence of sunlight. Under sunlight excitation of catalysts takes place rapidly than in absence of light. The experiment demonstrated that, both sunlight and photocatalyst are needed for the effective destruction of textile effluent, as it has been established that the photocatalytic decolourization of organic matter in the effluent is initiated by the photo excitation of the semiconductor, followed by the formation of electron hole pair on the surface of the catalyst.

4. CONCLUSION

In the present work two photocatalysts were prepared by solution combustion method. CaAl\(_2\)O\(_4\)-I and CaAl\(_2\)O\(_4\)-II were characterized by different technique such as XRD, SEM and UV-Vis reflectance. The coloured textile effluent is undesirable for the aquatic environment as it limits the utilization of the water resources. Photocatalytic decolorization is an alternative method to other conventional inefficient physico-chemical and biological methods to treat toxic effluents. The feasibility of photocatalytic decolourization and degradation of the effluent was studied by using the synthesized metal oxide nano particles as photocatalysts.

The synthesized photocatalysts have shown a maximum decolourization of the selected effluent under solar radiation. Among the catalysts used except TiO\(_2\) all the other nano particles CaAl\(_2\)O\(_4\)-I and CaAl\(_2\)O\(_4\)-II were proved to be very efficient photocatalysts in decolorizing the azo dye and achieving 93.99 % and 94.51 % respectively in 120 minutes at pH 7. The synthesized nano particles have been more efficient than the procured nano particle TiO\(_2\) which could able to achieve only 15.60 % of decolourization in 120 minutes at pH 7.

Similarly, when the pH was altered, 95.02% at pH 8 for 0.4 g/100 ml and 95.71 % at pH 9 for 0.5 g/100 ml to the following CaAl\(_2\)O\(_4\)-I and CaAl\(_2\)O\(_4\)-II metal oxide nano particles. Hence, the obtained results have proved that, photocatalytic decolourization of textile effluent was mainly dependent on the pH of the dye solution and catalyst dosage. The textile effluent achieved high colour removal in alkaline medium. The results also revealed that, the sunlight is the most efficient source for photocatalytic activity and the used nano particle is an effective media to decolorize the coloured effluents.

ACKNOWLEDGEMENT

The authors would like to acknowledge their sincere thanks to University Grants Commission, New Delhi for the financial assistance in conducting the present research work.

REFERENCES

doi:10.1071/s12034-007-0007-8

doi:10.1016/0021-9517(90)90269-P

doi:10.1016/S0045-6535(99)00551-2