Welcome to JENT its Thursday 23rd of November 2017

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Synthesis, Structural and Optical Characterization of TiO2 Nanoparticles and its Assessment to Cytotoxicity Activity


In this research work,TiO2 nanoparticles was synthesised by solgel method using titanium (IV) isopropoxide and calcinated at 500 °C, 600 °C and 700 °C for five hours. The synthesised nanoparticles are characterized by using X-ray Diffraction studies (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDXA), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis), Photoluminescence Spectra (PL), High Resolution Transmission Spectroscope (HRTEM) and Fourier Transform Infra Red Spectroscopy (FTIR). The synthesized nanoparticle of TiO2 calcinated at 500 °C and 600 °C for 5 hr shows anatase nature crystal structure and temperature increased to 700 °C, they undergo structural changes to rutile structure at the same duration of calcination. Average crystallite size can be determined by Debye-Scherrer formula for synthesized nanoparticles shows the particle sizes range from 30 nm to 47 nm. EDXA analysis confirms no impurities present in the sample. The band gap value decreases from 2.95 eV to 2.79 eV when calcination temperature increases in the UV-Visible analysis. The photoluminescence study of TiO2 shows the direct recombination between electrons in the conduction band and holes in the valence band. FTIR analysis shows the bending and stretching mode of Ti-O-Ti. HRTEM of TiO2 nanoparticles shows nearly spherical with approximately particles size of 35 nm to 50 nm. The cytotoxicity activity of TiO2 nanoparticles calcinated at 500 °C, 600 °C and 700 °C has been explored.

Article Type: Research Article

Corresponding Author: K. Manikandan 1  


This article has not yet been cited.

K. Manikandan 1*,  A. Jafar Ahamed 2,  G.M. Brahmanandhan 3.  

1. Department of Chemistry, Velalar College of Engineering and Technology (Autonomous), Erode, India.

2. Department of Chemistry, Jamal Mohamed College (Autonomous), Trichy, India.

3. Department of Nanomaterials, Kattankulathur, Chennai, India.

J. Environ. Nanotechnol., Volume 6, No. 3 pp. 94-102
ISSN: 2279-07 48 eISSN: 2319-5541
Download Citation


Akarsu, M., Asilturk, M., Sayilkan, F., Kiraz, N., Arpac, E., Sayilk, H., A Novel Approach to the Hydrothermal Synthesis ofanatase titania Nanoparticles and the Photocatalytic Degradation of Rhodamine B, Turk. J. Chem., 30(3), 333-343(2006).

Byun, D., Kim, Y., Lee, K., Hofmann, P., Photocatalytic TiO2 deposition by chemical vapor deposition, Journal of Hazardous Materials, 73(2), 199-206(2000).

doi: 10.1016/S0304-3894(99)00179-X

Czanderna, W., Rao, C. N. R., Honig, J. M., The anatase-rutile transition. Part 1.Kinetics of the transformation of pure anatase, Trans.Faraday Soc., 54,1069(1958).

doi: 10.1039/TF9585401069 

Elangovan, S. V., Chandramohan, V., Sivakumar, N., Senthil, T. S., Synthesis and characterization of ZnO nanoparticles at different molarity concentrations for photocatalytic applications,Desalination and water treatment, 21, 1–8(2015).


Hadjipanayis, G. C., Siegel, R.W., eds., Nanophase Materials, Kluwer Academic Publishers, Dordrecht, NATO ASI Series, 1994, pp.E 260.

Juergen, H., Braun, Baidins, A., Marganski, R. E., TiO2 pigment technology: a review, Progress in Organic Coatings, 20(2), 105-138(1992).


Kamat, P.V., Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., 93(1), 267-300(1999).


Kavan, L., Gratzel, M., Gilbert, S.E., Klemenz, C., Scheel, H., Electrochemical andPhotoelectrochemical Investigation of Single-Crystal Anatase, J. Am. Chem. Soc., 118(28), 6716-6723(1996).

doi: 10.1021/ja954172l

Khan, A. M., Akhtar, S. M., Yang, O. B., Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparticles for dye-sensitized solar cells, Solar energy, 84(12), 2195-2201(2010).


Krol, R., Goossens, A., Schoonman, J., Schottky, M., Analysis of Nanometer‐Scale thin‐Film Anatase TiO2, J. Electrochem. Soc., 144(5), 1723-1727(1997).


Liqiang, J., Xianojun, S., Baiqi, X., Weimin, C., and Honggang, F., The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity, Journal of Solid State Chemistry, 177, 3375-3382 (2004).


Mark, H. F., Othmer, H. F., Overberger, C. G., Seaberg G. T.,Encyclopedia of Chemical Technology, John Wiley, New York, 1983, pp.139.

Mogyorosi, K., Dekany, I., Fendler, J. H., preparation and characterization of clay mineral intercalated TiO2 nanoparticle,Langmuir, 19(7), 2938(2003).


Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Wolff, A. V., Goodrich, M. G., Campbell, H., Mayo, J.,  Boyd, P.,  Feasibility of high flux anticancer drug screen using a diverse panel of cultured human tumour cell lines,Journal of the National Cancer Institute, 83, 757-766(1991).


Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,Journal of Immunological Methods, 65, 55-63(1983).


Navrotsky, A., Kleppla, O. J.,Journal of the American Ceramic Society, 50(11), 626- 630.

Prasad, K., Pinjari, D. V., Pandit, A. B., Mhaske, S. T., Phase transformation of  nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol– gel technique, Ultrasonics Sonochemistry, 17(2), 409-415(2010).

doi: 10.1016/j.ultsonch.2009.09.003

Rammal, A., Brisach, F., Henry, M., Chimie, C. R., Hydrothermal synthesis of TiO2 anatasenanocrystals using hexaprismatic-shaped oxo-carboxylate complexes, C. R. Chimie, 5(1), 59-66(2002).


Reidy, D. J., Holmes, J. D., Morris, M. A.,The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2,Journal of the European ceramic society, 26(9), 1527(2006).


Senthil, T. S., Kima, D., Muthukumarasamy, N., Kanga, M., Closely packed dense network rutile nanorods with gadolinium for efficient dye sensitized solar cells, Applied Surface Science, 313, 858–863(2014).


Swapan, K., Das, Manas, K., Bhunia, and Bhaumik, A., Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties,Dalton Trans., 39, 4382–4390(2010).

doi: 10.1039/C000317D

Vijayalakshmi, R., and Rajendran, V.,Synthesis and characterization of nano-TiO2 via different   methods, Arch. Appl. Sci. Res., 4(2), 1183- 1190(2012).

Wang, D., Xiao, L., Luo, Q.,Li, X., An, J., Duan, Y., Highlyefficient visible light TiO2 photocatalyst prepared by sol–gel method at temperatureslower  than 300° C, Journal of Hazardous Materials, 192(1), 150-159(2011). 

doi: 10.1016/j.jhazmat.2011.04.110

Weast, R.,C Hand book of Chemistry and Physics, CRC Press Boca RatonFL, 1984.

Yoganarasimhan, S. R., Rao, C. N. R.,Mechanism of crystal structure transformations. Part 3.—Factors affecting the anatase-rutile transformation,Trans. Faraday Soc., 58, 1579(1962).

doi: 10.1039/TF9625801579

Yuan, S., Chen, S., Hu, S., Fabrication of TiO2 nanoparticles /surfactant   polymer complex film on glassy carbon electrode and its application to sensing trace dopamine, Mat. Sci. Eng.C, 25(4), 479- 485(2005).


Zallen, R., Moret, M. P., The optical absorption edge of brookite TiO2, Solid state Communications, 137(3), 154-157(2006).


Zhang, R., Gao, L., Zhang, Q., Photodegradation of surfactants on the nanosized   TiO2 prepared by hydrolysis of the alkoxide titanium, Chemosphere, 54(3), 405-411(2004).

doi: 10.1016/S0045-6535(03)00588-5

Zhao, Y., Li, C. Z., Liu, X. H., Gu, F., Jiang, H. B., Shao, W., Zhang, L., and He, Y., Synthesis and optical properties of TiO2 nanoparticles, Material Letter, 61(1), 79-83(2007).