Open Access

Microwave Assisted Synthesis, Characterization of Flower like ZnO - TiO2 Nano Composites for the Removal of Congo Red Dye

M. Chitra, Research Scholar, R&D Centre, Bharathiar University, Coimbatore, TN, India. R.Venckatesh, rvenckat@gmail.com
Department of Chemistry, Government Arts College, Udumalpet, TN, India.
Rajeswari Sivaraj Department of Chemistry, Government Arts College, Udumalpet, TN, India.


J. Environ. Nanotechnol., Volume 5, No 4 (2016) pp. 62-68

https://doi.org/10.13074/jent.2016.12.164216

PDF


Abstract

In this work we synthesized flower like ZnO/TiO2 nanocomposite by chemical precipitation method using microwave irradiation. The ZnO nanoparticle was decorated by TiO2 nanoparticle. The structure and morphology of the resulting particles were characterized by XRD, SEM, EDAX, TEM, FT-IR & UV-Visible analysis. The X-ray analysis confirms the co-existence of  anatase and rutile TiO2 phases with hexagonal wurzite ZnO phase. The scanning electron microscopy reveals that the TiO2 located on the surface of the ZnO flowers. The similarities in photo degradation mechanism, ZnO and TiO2 have comparable band gap energy, and have very good reputation as photo catalysts. The nanoparticles have large surface area and thus provide a large number of active sites for interaction among the particles of different oxides. To achieve, ZnO/TiO2 nanocomposite having particle size, strictly, in the nano domain, was synthesised. The as prepared flower like ZnO/TiO2 sample showed excellent photocatalytic activity for the degradation of Congo red under direct exposure to sun light.

Full Text

Reference


Dimitrijevic, N. M., Saponjic, Z. V., Rabatic, B. M. and Rajh, T., Assembly and charge transfer in hybrid TiO2 architectures using Biotin−Avidin as a Connector, J. Am. Chem. Soc., 127, 1344-1345(2005).

Balachandran, K., Venckatesh, R., Rajeshwari Sivaraj, Int. J. Eng. Sci. Technol., 2(8) 3695-3700(2010).

Bandara, J., Tennakone, K. and Jayatilaka, P. P. B., Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes, Chemosphere, 49, 439(2002).

Biswa Mohan Sahov, Ravikumar, B. V. V., Inyanaranjanpanda and Dinda, S. C., Eco friendly and facile one-pot multicomponent synthesis of Thiopyrimidines under microwave irradiation, Journal of nanoparticles, Article ID 780780(2013).

Calleja, G., Serrano, D. P., Sanz, R., Pizarro, P. and Garcı´a, A., Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of non-ionic surfactants, Ind. Eng. Chem. Res., 43(10), 2485-2492, (2004).

https://doi.org/10.1021/ie030646a

Chun Cheng, Abbas Amini, Chao Zhu, Zuli Xu, Haisheng Song & Ning Wang, Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures, Scientific Reports 4, Article number: 4181

Dave, R. S. and Patel, A. R., Photochemical and photocatalytic of cypermethirin under UV radiation, Der. pharma chemical, 2 (1), 152-158(2010).

Diamandeseu, L., Vasiliu, F., Tarabasanu-minaila, D., Feder, M., Vlaicu, A. M., Trodorescu, C. M., Macovei, D., Enculescu, I., Paravulescu,V. and Vasile, E., Structural and photocatalytic properties of iron and europium doped TiO2 nanoparticles obtained under hydrothermal conditions, Mater. Chem. Phy., 112, 146-153(2008).

Duan, X. W., Wang, G. Z., Wang, H. Q., Wang, Y. Q., Shen, C. and Cai, W. P., Orientalable pore-size-distribution of ZnO nano structures and their superior photocatalytic activity, Cryst. Eng. Comm., 12, 2821-2825(2010).

Gao, Y., Masuda, Y., Peng, Z., Yonezawa, T. and Koumoto, K., Light-Excited super hydrophilicity of amorphous TiO2 thin films deposited in an aqueous Peroxotitanate solution, J. Mater. Chem., 13, 608-613(2003).

https://doi.org/10.1039/b208105a

Gegova, R., Dimitriev, Y., Bachvarova-Nedelcheva, A. R., Iordanova, A., Loukanov and Iliev, Tz., Combustion gel method for synthesis of nanosized ZnO/TiO2 powders, J. Chem. Technol. Metall., 48, 147(2013).

Hossein Habibi, Mohammad Hossein Rahmati, The effect of operational parameters on the photocatalytic degradation of Congo red organic dye using ZnO–CdS core–shell nano-structure coated on glass by doctor blade method, Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 160-164(2015).

Janitabar-Darzi, S. and Mahjoub, A. R., Investigation of phase transformations and photocatalytic properties of sol-gel prepared nanostructered ZnO/TiO2 composite, J. Alloys and Compound, 486, 805-808(2009).

Kalita, S. J., Qiu, S. and Verma, S., A quantitative study of the calcination and sintering of nanocrystalline titanium dioxide and its flexural strength properties, Mater. Chem. Phys., 109, 2-3, 392-398(2008).

https://doi.org/10.1016/j.matchemphys.2007.12.031

Kanan, N. and Sundaram, M. M., Dyes and Pigment, 51, 25-40(2001)

Karthik, K., Pandian, S. K. and Jaya, N. V., Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol-gel method, Appl. Sur. Sci., 256, 22, 6829-6833(2010).

Kim, S. J., Park, S. D., Rhee, C. K., Kim, W. W. and Park, S., Photocatalytic characteristics of homogeneously precipitated TiO2 nano-sized powders, Scripta Materialia, 44, 1229-1233(2001).

https://doi.org/10.1016/S1359-6462(01)00854-5

Liao, D. L., Badour, C. A. and Liao, B. Q., Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange, J. Photochem. Photobio. A: Chem., 194, 11-19(2008).

Lingling Xu, Bo Wei, Weilong Liu, Hailin Zhang, Chunyan Su and Jixin Che, Flower like ZnO-Ag2O composites: precipitation, synthesis and photocatalytic activity, Nanoscale Res. Lett., 8,536(2013).

Lingling Xu, Bo Wei, Weilong Liu, Hailin Zhang, Chunya Su and Jixin Che, ZnO-Ag2O composites: Precipitation synthesis and photocatalytic activity, Nanoscale Res. Lett., 8, 536(2013).

Mali, S. S., Betty, C. A., Bhosale P. N. and Patil, P. S., Synthesis, characterization of hydrothermally grown MWCNT–TiO2 photoelectrodes and their visible option properties, ECS J. Solid State Sci. Technol., 1, 15 (2012).

Md Ahsan Habib, Md Tusan Shahadat, Newar Mohammed, Bahadur, Iqbal M. Ismail and Abu Jafar Mahmood, Int. Nano Lett., 3, 5(2013).

Muhammed Javed Iqbal, Muhammed Naeem Ashiq, J. Res. Scie., Pakistan,18 (2), 91-99(2007).

Neeri, Manual on water analysis, National Environment Engineering Research Institute, Nagpur(1988).

Rabatic, B. M., Dimitrijevic, N. M. and Cook, R. E., Spatially confined corner defects induce chemical functionality of TiO2 nanorods, Adv. Mater., 18, 1033-1037(2006).

Singh, A. K. and Umesh TNakate, Photocatalytic properties of microwave synthesized TiO2 and ZnO nanoparticles using malachite green dye, J. Nanoparticle., article ID310809. 2013)

Sini Kuriakose, Neha Bharwaj, Jaspal Singh, Biswarup Satpati and Satyabrata Mohapatra, Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method, Beilstein journal Nanotechnology 4: 763-770,(2013).

Stoyanova, A., Hitkova, H., Bachvarova-Nedelcleva A Iordanova, R., Ivanova, M. and Sredkov, N., Synthesis and antibacterial activity of TiO2/ZnO nanocomposites prepared via non-hydrolytic route, J. Chem. Technol. Metall., 48, 2, 154-161(2013).

Tian, J., Chen, L., Yin, Y., et al., “Photocatalyst of TiO2/ZnO nano composite film: preparation, characterization, and photodegradation activity of methyl orange, Surface and Coatings Technology, 204, 1-2, 205-214(2009).

Tong, J., Zhang,B., Tian, F., Chen, D. He., Preparation of Fe3+ doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation, J. Hazard. Mater., 155, 572-579(2008).

Virginia Roldán, M., Nora Pellegri, Oscarde Sanctis, Electrochemical method for Ag-PEG Nanoparticles Synthesis, J. Nanopart., ArticleID524150,7(2013).

Wahab, R., Mishra, A., Yun, S. I., Kim, Y. S. and Shin, H. S., Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route, Appl. Microbiol. Biotechnol., 87, 1917-1925(2010).

Wang, J., Li J., Xie, Y., et al., Investigation on solar photocatalytic degradation of various dyes in the presence of Er3+: YAlO3/ZnO-TiO2 composite, J. Environ. Management., 91, 3, 677-684(2010).

Wang, Z., Jiangx Zhang, B. Q., Kang, Y., Xie, P. Y., Lv, R., Xu, Zhang, X., Sonocatalytic degration of some dye stuffs and comparison of catalytic activities of nanosized TiO2, nanosized ZnO and composite TiO2 /ZnO powders under ultrasonic irradiation, Ultrasonics, sonochemistry, 16, 225-231(2009).

Xu, L. L., Li, Z. M., Cai, Q. H., Wangn, H. X., Gao, H., Lu, Q., Liu, J., Precursor template synthesis of three dimensional mesoporous ZnO hierarchical structures and their photocatalytic properties, Cryst. Eng. Comm., 12, 2166-2172(2010).

Xu, X., Tian, J, Wang, X., Dai, J. and Liu, X., Hydrothermal and post-heat treatments of TiO2/ZnO composite powder and its photodegradation behavior on methyl orange, Ceramics International, 37, 2201-2206(2011)

Yoon, K. H., Cho, J. and Kang, D. H., ibid. 34(9), 1451-1461(1999).

Yu, J. G., Zhao, X. J. and Zhao, Q. N., Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method, Mater. Chem. Phys., 69, 25(2001).

Zhang, L., Yang, H. Q., Ma, J. H., Li, L., Wang, X. W., Zhang, L. H., Tian, S. and Wang, X. Y., Controllable synthesis and shape dependent photocatalytic activity of ZnO nano rods with a cone and different aspect ratios and of short and fat ZnO micro rods by varying the reaction temperature and time, Appl. Phys. A., 100, 1061-1067(2010).

Zhou, X. F., Hu, Z. L., Fan, Y. Q. , Chen, S., Ding, W.P. N. P., Microspheric organisation of multi-layered ZnO nanosheets with hierarchically porous structures, J. Phys. Chem. C., 112, 1722-1728(2008).

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS