Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Affinity of Cytotoxic Copper(II) Complex to Bovine Serum Albumin


The interaction of water soluble copper(II) complex, [Cu(dipica)(CH3COO)]ClO4 (1), where dipica is di-(2-picolyl)amine, as in vitro cytotoxic agent, with bovine serum albumin (BSA) has been studied by fluorescence, UV-Vis absorption and circular dichroism (CD) spectroscopic techniques at pH 7.4. The quenching constants and binding parameters such as binding constants and number of binding sites were determined by fluorescence quenching method. The obtained results proved that the fluorescence quenching of BSA by 1 was a result of the formation of a non-fluorescent BSA-1 system with the binding constants of 1.81 x 10-5 M-1 and 2.10 x 10-5 M-1 at 300 K and 310 K respectively. The calculated thermodynamic parameters (G°, H° and S°) confirmed that the binding reaction is mainly entropy-driven and hydrophobic forces played major role in the reaction. The distance, r, between the donor (BSA) and acceptor (1) was obtained according to the Forster theory of nonradiative energy transfer. On the other hand, structural analysis indicates that binding of 1 resulting in a higher change in the local polarity around tryptophan rather than tyrosine residues of BSA as revealed by synchronous fluorescence spectra and a decrease in ï¡-helix as revealed by the far-UV CD spectra.

Article Type: Research Article

Corresponding Author: M. Murali 2  


This article has not yet been cited.

S. Sangeetha  1,  M. Murali 2*.  

1, 2. Department of Chemistry, National College (Autonomous), Tiruchirappalli, TN, India.

J. Environ. Nanotechnol., Volume 5, No. 3 pp. 09-19
ISSN: 2279-0748 eISSN: 2319-5541
Download Citation


Arnell, R., Ferraz, N. and Fornstedt, T., Analytical characterization of chiral drug-protein interactions: Comparison between the optical biosensor (Surface Plasmon   Resonance) assay and the HPLC perturbation method, Anal. Chem., 78, 1682-1689(2006).


Bi, S., Sun, Y., Qiao, C., Zhang, H. and Liu, C., Binding of several anti-tumor drugs to  bovine serum albumin: Fluorescence study, J. Lumin., 129, 541-547 (2009). 

doi: 10.1016/j.jlumin.2008.12.010

Cheng, Z. J. and Zhang, Y. T., Spectroscopic investigation on the interaction of salidroside with bovine serum albumin, J. Mol. Struct., 889, 20-27 (2008).

doi: 10.1016/j.molstruc.2008.01.013

Chen, G. Z., Haong, X. Z., Xu, J. C., Zhang, Z. Z. and Wang, Z. B., The Methods of Fluorescence Analysis, 2nd edn., pp. 2-112, Beijing Science Press (1990).

Chen. J., Jiang, X. Y., Chen, X. Q. and Chen, Y., Effect of temperature on the metronidazole -BSA interaction: Multi-spectroscopic method, J. Mol. Struct., 876, 121-126(2008).


Chen, Q. Y., Fu, H. J., Zhu, W. H., Qi, Y., Ma, Z. P., Zhao, K. D. and Gao, J., Interaction with DNA and different effect on the nucleus of cancer cells for copper(II) complexes of N-benzyl di(pyridylmethyl)amine, Dalton Trans., 40, 4414-4420(2011).


Cui, F., Qin, L., Zhang, G., Liu, X., Yao, X. and Lei, B., A concise approach to 1,11-didechloro-6-methyl-4’-O-demethylrebeccamycin and its binding to human serum albumin: Fluorescence spectroscopy and molecular modeling method, Bioorg. Med. Chem., 16, 7615- 7621 (2008).


Curry, S., Mandelkow, H., Brick, P. and Franks, N., Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites, Nat. Struct. Mol. Biol., 5, 827-835 (1998).


Cyril, L., Earl, J. K. and Sperry, W. M., Biochemist’s Handbook, p. 83, E and FN Epon Led, London (1961).

Divsalar, A., Bagheri, M. J., Saboury, A. A., Mansoori-Torshizi, H. and Amani, M., Investigation on the interaction of newly designed anticancer Pd(II) complexes with different aliphatic tails and human serum albumin, J. Phys. Chem. B, 113, 14035-14042 (2009).


 Eftink, M. R. and Ghiron, C. A., Fluorescence quenching studies with proteins, Anal. Biochem., 114, 199-227 (1981). 


Förster, T., Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys.,437, 55-75 (1948).


Galanski, M., Jakupec, M. A. and Keppler, B. K., Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical  approaches, Curr. Med. Chem., 12, 2075-2094 (2005).


Hof, M., Hutterer, R. and Fidler, V., Fluorescence Spectroscopy in Biology, Springer         Science+Business Media, Berlin (2005).

Hu, Y. J., Liu, Y., Jiang, W., Zhao, R. M. and Qu, S. S., Fluorometric investigation of the interaction of bovine serum albumin with surfactants and 6-mercaptopurine, J. Photochem. Photobiol. B, 80, 235-242 (2005).


Jayabharathi, J., Thanikachalam, V. and Venkatesh Perumal, M., Mechanistic investigation on binding interaction of bioactive imidazole with protein bovine serum albumin - A biophysical study, Spectrochim. Acta Part A, 79, 502-507 (2011).


Kang, J., Liu, Y., Xie, M., Li, S., Jiang, M. and Wang, Y.: Interactions of human serum albumin with chlorogenic acid and ferulic acid, Biochim. Biophys. Acta, 1674, 205-214 (2004).


Kelly, S. M., Jess, T. J. and Price, N. C., How to study proteins by circular dichroism,  Biochim. Biophys. Acta, 1751, 119-139 (2005). 


Keppler, B. K., Lipponer, G., Stenzel, B. and Kranz, F., Metal complexes in cancer Chemotherapy, Verlag Chemie VCH, Weinheim (1993).


Kragh-Hansen, U., Molecular aspects of ligand binding to serum albumin, Pharmacol.   Rev., 33, 17-53 (1981).

Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd edn., Springer Science+          Business Media, New York (2006).

Lakowicz, J. R. and Weber, G., Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules, Biochemistry, 12, 4161-4170 (1973).


Leckband, D. A.: Measuring the forces that control protein interactions, Annu. Rev. Biophys. Biomol. Struct., 29, 1-26 (2000).


Lloyd, J. B. F., Evett, I. W., Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra, Anal. Chem., 49, 1710-1715(1977).


 Lu, Z. X., Cui, T., Shi, Q. L., Application of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology, 1st edn., pp. 79-82, Science Press, Beijing (1987).

Lunardi, C. N., Tedesco, A. C., Kurth, T. L., Brinn, I. M., The complex between 9-(n-decanyl)acridone and Bovine Serum Albumin. Part 2. What do fluorescence probes probe?, Photochem. Photobiol. Sci., 2, 954-959 (2003).


Miller, J. N., Recent advances in molecular luminescence analysis, Proc. Analy. Div. Chem. Soc., 16, 203-208 (1979).


Peters, T., Serum albumin, Adv. Protein Chem., 37, 161-245 (1985). 

doi: 10.1016/S0065-3233(08)60065-0

Ross, P. D. and Subramanian, S., Thermodynamics of protein association reactions: forces contributing to stability,  Biochemistry, 20, 3096-3102 (1981).       

doi: 10.1021/bi00514a017

Price, N. C., Conformational issues in the characterization of proteins, Biotechnol. Appl. Biochem., 31, 29-40 (2000).


Samari, F., Hemmateenejad, B., Shamsipur, M., Rashidi, M. and Samouei, H., Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: A spectroscopic approach, Inorg. Chem., 51, 3454-3464 (2012).


Sangeetha, S. and Murali, M., Water soluble copper(II) complex [Cu(dipica)(CH3COO)]ClO4: DNA binding, pH dependent DNA cleavage and  Cytotoxicity, Inorg. Chem. Commun., 59, 46-49 (2015).


Sulkowska, A., Równicka, J., Bojko, B. and Sułkowski, W., Interaction of anticancer drugs with human and bovine serum albumin, J. Mol. Struct., 651-653, 133-140 (2003).  

doi: 10.1016/S0022-2860(02)00642-7

Tang, J. H., Luan, F. and Chen, X. G., Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling,  Bioorg. Med. Chem., 14, 3210-3217 (2006).       


Waddell, J., Steenbock, H., Elvehjem, C. A., Hart, E. B., Donk, E. V., Further proof  that the anemia produced on diets of whole milk and iron is due to a deficiency of copper, J. Biol. Chem., 83, 251-260 (1929).

Wang, T., Zhao, Z., Wei, B., Zhang, L. and Ji, L., Spectroscopic investigations on the   binding of dibazol to bovine serum albumin, J. Mol. Struct., 970, 128-133 (2010).


Wang, H., Jiang, X., Zhou, I., Cheng, Z., Yin, W., Duan, M., Liu, P. and Jiang, X., Study of the interaction between 5-sulfosalicylic acid and bovine serum albumin by fluorescence spectroscopy, J. Lumin., 134, 747-753 (2013).

doi: 10.1016/j.jlumin.2012.06.053

Wu, F. Y., Ji, Z. J., Wu, Y. M., Wan, X. F., Interaction of ICT receptor with serum albumins in aqueous buffer, Chem. Phys. Lett., 424, 387-393 (2006).


Yuan, J. P., Guo, W. W., Yang, X. R., Wang, E. K., Anticancer drug-DNA interactions measured using a photoinduced electron-transfer mechanism based on luminescent quantum dots, J. Anal. Chem., 81, 362-368 (2009).


Zhang, G., Wang, Y., Zhang, H., Tang, S. and Tao, W., Human serum albumin interaction with paraquat studied using spectroscopic methods, Pestic. Biochem.Physiol., 87, 23-29 (2007).


Zhao, X., Liu, R., Chi, Z., Teng, Y. and Qin, P., New insights into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: Comprehensive spectroscopic studies, J. Phys. Chem. B, 114, 5625-2631 (2010). 


Zhou, N., Liang, Y. Z. and Wang, P., Characterization of the interaction between furosemide and bovine serum albumin, J. Mol. Struct., 872, 190-196 (2008).