Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Synthesis, Structural and Antibacterial Properties of Mg Doped ZnO Nanoparticles


Zinc oxide (ZnO) nanoparticles were chemically synthesized with magnesium doping and characterized through UV–visible spectroscopy, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDAX) techniques and photoluminescence (PL) spectroscopy. Magnesium doped ZnO nanoparticles were found to be crystalline having a single phase as confirmed by XRD and HRTEM. The antibacterial activity of Mg doped ZnO nanoparticles synthesized by a simple co-precipitation technique have been investigated against Escherichia coli and Staphylococcus aureus bacterial strains. It has been interestingly observed that Mg doping has enhanced the inhibitory activity of ZnO against S. aureus more efficiently than the E. coli bacterial strain.

Article Type: Review Article

Corresponding Author: A. Jafar Ahamed 1  

Email: agjafar@yahoo.co.in

This article has not yet been cited.

A. Jafar Ahamed 1*,  P. Vijaya Kumar 2,  M. Karthikeyan 3.  

1, 2, 3. Department of Chemistry, Jamal Mohamed Tamil Nadu College (Autonomous), Tiruchirappalli, TN, India.

J. Environ. Nanotechnol., Volume 5, No. 2 pp.11-16
ISSN: 2279-0748 eISSN: 2319-5541
Download Citation


Applerot, G., Lipovsky, A., Dror, R., Perkas, N., Nitzan, Y., Lubart, R. and Gedanken, A., Enhanced antibacterial of nanocrystalline ZnO due to increased ROS-mediated cell injury, Adv. Funct Mater.,19, 842-852(2009).

doi: 10.1002/adfm.200801081

Beaur, L., Bretagnon, T., Gil, B., Kavokin, A., Guillet, T., Brimont, C., Tainoff, D., Teisseire, M. and Chauveau, J. M., Exciton radiative properties in nonpolar homoepitaxial ZnO/ (Zn,Mg) O quantum wells, Phys. Rev. B., 84(16), 165312/01-08(2011).


Becker, J., Raghupathi, K. R., Pierre, J. S., Zhao, D., Koodali, R. T., Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation, J. Phys. Chem C., 115(28), 13844-13850(2011).

doi: 10.1021/jp2038653

Brayner, R., Ferrari-lliou, R., Brivois, N., Djediat, S., Benedetti, M. F. and Fievet, F., Toxicological impact studies based on Escherictia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 6(4), 866-870(2006).

doi: 10.1021/nl052326h

Chen, Y., Zhang, C., Huang, W., Situ, Y. and Huang, H., Multimorphologies nano-ZnO preparing through a simple solvothermal method for photocatalytic application, Mater Lett.,141, 294-297(2015).


Dai, Z. R., Pan, Z. W. and Wang, Z. L., Novel nanostructures of functional oxides synthesized by thermal evaporation, Adv. Funct. Mater., 13(1), 09-24(2003).

doi: 10.1002/adfm.200390013

Fan, X. M., Lian, J. S., Zhao, L. and Liu, Y., Single violet luminescence emitted from ZnO flims obtained by oxidation of Zn film on quartz glass, Appl. Sur. Sci., 252(2), 420-424(2005).


Ghaffarian, H. R., Saiedi, M., Sayyadnejad, M. A. and Rashidi, A. M., Synthesis of ZnO nanoparticles by spray pyrolysis method, Iran J. Chem. Chem. Engg., 30(1), 01-06(2011).

Jang, E. S., Won, J. H., Hwang, S. J. and Choy, J. H., Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity, Adv. Mater., 18(24), 3309-3312(2006).

doi: 10.1002/adma.200601455

Janotti, A. and Van de Walle, C. G., Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 72(12), 126501/01-29(2009).


Jung, M., Kim, S. and Ju, S., Enhancement of green emission from Sn-doped ZnO nanowires. Opt. Mater. (Amst)., 33(3), 280-283(2011).


Kruefu, V., Peterson, E., Khantha, C., Siriwong, C., Phanichphant, S. and Carroll, D. L., Flame-made niobium doped zinc oxide nanoparticles in bulk heterojunctions solar cells, Appl. Phys. Lett., 97, 053302/01-03(2010).

Kumar, S. and Sahare, P. D., Observation of band gap and surface defects of ZnO nanoparticles synthesized via hydrothermal route at different reaction temperature, Optics. Commun., 285, 5210-5216(2012).


Liu, M., Kitai, A.H., and Mascher, P., Point defects and luminescence centes in zinc oxide and zinc oxide doped with manganese, J. Lumin., 54(1), 35-42(1992).


Malkaj, P., Dalas, E., Kanellopoulou, D. G., Chrissanthopoulos, A. and Sevastos, D., Calcite particles formation in the presence of soluble polyvinyl- alcohol matrix, Powder Tech., 177(2), 71-76(2007).


Munoz Hernandez, G., Escobedo Morales, A. and Pal, U., Thermolytic growth of ZnO nanocrystals: morphology control and optical poperties, Cryst. Growth. Des., 9, 297-300(2009).


Omri, K., Najeh, I., Dhahri, R., El Ghoul, J. and El Mir, L., Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method, Micro Elect. Engg., 128, 53-58(2014).


Prasad, R. and Rattan, G., Preparation methods and applications of CuO-CeO2 catalysts: A short review, Bull. Chem. React. Eng. Catal., 5, 7-30(2010).

Radzimska, A. K. and Jesionowski, T., Zinc Oxide-From Synthesis to Application: A Review, Materials., 7, 2833-2881(2014).


Raoufi, D., Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method, Renewable Energy., 50, 932-937(2013).


Singh, J., Husdon, M. S. L., Pandy, S. K., Tiwari, R. S. and Srivatav, O. N., Structural and hydrogenation studies of ZnO and Mg doped ZnO nanowires, Int. J. Hydrogen Energy., 37, 3748-3754(2012).


Wright, G. D., Resisting resistance: new chemical strategies for battling superbugs, Chem. Biol., 7, R127-R132(2000).


Xiong, H. M., Xu, Y., Ren, Q. G. and Xia, Y.Y., Stable aqueous ZnO @ polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging, Am. J. Chem. Soc., 130, 7522-7523(2008).


Zandi, S., Kameli, P., Salamati, H., Ahmadvand, H. and Hakimi, M., Microstructure and optical properties of ZnO nanoparticles prepared by simple method, Physica. B., 406, 3215-3218(2011).