Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541
CODEN:JENOE2

Removal of Textile Dye using Carbon Nanotubes as an Adsorbent in Fixed Bed Column

Abstract

In this present study, we used Carbon Nanotubes (CNT) as an adsorbent for the removal of Acid Blue dye. MWNTs are synthesized from Rosmarinus officinalis oil as a Non-conventional precursor on to Fe/Mo catalyst supported on silica at 50 °C under N2 atmosphere by spray pyrolysis process. The efficiency of the CNT has been detected by the Fixed Bed Column Adsorption studies with various parameters like initial dye concentration, different flow rate and bed height. The down-fow column adsorption technique is used to assessing the stability of the chosen adsorbent for desigh purpose. The Bed Depth Service Time (BDST), Thomas and Yoon-Nelson Models were applied for the analysis of Acid Blue dye adsorption in the column.

Article Type: Review Article

Corresponding Author: S. Karthikeyan 1  

Email: environkarthi@gmail.com

This article has not yet been cited.

S. Karthikeyan 1*,  Amudha  2,  S. Tamilselvi 3,  K. Gopal 4.  

1. Department of Chemistry, Chikkanna Government Arts College, Tiruppur, TN, India.

2, 3, 4. Department of Chemistry, Erode Arts and Science College, Erode, TN, India.

J. Environ. Nanotechnol., Volume 5, No. 2 pp.17-24
ISSN: 2279-0748 eISSN: 2319-5541
ENT162192.pdf
Download Citation

Reference

Akasaka, T. and Watari, F., Capture of bacteria by flexible carbon nanotubes, Acta Biomater., 5(2), 607-612(2009).

doi:10.1016/j.actbio.2008.08.014.

Aksu, Z. and Gönen, F., Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves, Process Biochem., 39(5), 599-613(2004).

doi:10.1016/S0032-9592(03)00132-8.

Brady-Estevez, A. S., Kang, S. and Elimelech, M., A single walled carbon nanotube filter for removal of viral and bacterial pathogens, Small, 4(4), 481-484(2008).

doi: 10.1002/smll.200700863.

Changlun Chen, Jun Hu, Dadong Shao, Jiaxing Li and Xiangke Wang, Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II), J. Hazard. Mater., 164(2-3), 923-928(2009).

doi: 10.1016/j.jhazmat.2008.08.089.

Chowdhury, Z., Zain, S., Rashid, A., Rafique, R. and Khalid, K., Breakthrough curve analysis for column dynamics sorption of Mn(II) ions from wastewater by using Mangostana garcinia peel-based granular-activated carbon, J. Chem., 2013, 8(2013).

doi:10.1155/2013/959761.

Delgado, L. F., Charles, P., Glucina, K. and Morlay, C., The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon-A review, Sci. Total. Environ., 435-436, 509-525(2012).

doi:10.1016/j.scitotenv.2012.07.046.

Deng, S. D. S., Upadhyayula, V. K. K., Smith, G. B. and Mitchell, M. C., Adsorption Equilibrium and Kinetics of Microorganisms on Single-Wall Carbon Nanotubes, IEEE Sens. J, 8(6), 954-962(2008).

doi:10.1109/JSEN.2008.923929.

Di, Z. C., Ding, J., Peng, X. J., Li, Y. H., Luan, Z. K. and Liang, J., Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles., Chemosphere, 62(5), 861-865(2006).

doi:10.1016/j.chemosphere.2004.06.044.

Gotovac, S., Yang, C. M., Hattori, Y., Takahashi, K., Kanoh, H. and Kaneko, K., Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters, J. Colloid. Interface. Sci., 314(1), 18-24(2007).

doi:10.1016/j.jcis.2007.04.080.

Hedderman, T. G., Keogh, S. M., Chambers, G. and Byrne, H. J., In-depth study into the interaction of single walled carbon nanotubes with anthracene and p-terphenyl, J. Phys. Chem. B., 110(9), 3895-3901(2006).

doi:10.1021/jp055647q.

Hyung, H. and Kim, J. H., Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters, Environ. Sci. Technol., 42(12), 4416-4421(2008).

doi:10.1021/es702916h.

Kandah, M. I. and Meunier, J. L., Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater., 146(1-2), 283-288(2007).

doi:10.1016/j.jhazmat.2006.12.019.

Karthikeyan, S. and Sivakumar, P., The effect of activating agents on the activated carbon prepared from Feronia limonia (L.) swingle (wood apple) shell, J. Environ. Nanotechnol., 1(1), 5-12(2012).

doi: 10.13074/jent.2012.10.121009.

Karthikeyan, S., Santhi, P., Saravanan, A. and Saranya, K., Sorption of basic dye (Rhodamine B) by Nano porous activated carbon from Sterculia Quadrifida shell waste, J. Environ. Nanotechnol., 3(1), 88-100(2014).

doi : 10.13074/jent.2013.12.132087.

Kundu, S. and Gupta, A. K., Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization, Chem. Eng. J., 122(1), 93-106(2006).

doi:10.1016/j.cej.2006.06.002.

Lee, S. M. and Davis, A. P., Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge, Water Res., 35(2), 534-540(2001).

doi: 10.1016/S0043-1354(00)00284-0.

Li, Y. H., Di, Z., Ding, J., Wu, D., Luan, Z. and Zhu, Y., Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes, Water Res., 39(4), 605-609(2005).

doi:10.1016/j.watres.2004.11.004.

Lu, C. and Su. F., Adsorption of natural organic matter by carbon nanotubes, Sep. Purif. Technol., 58(1), 113-121(2007).

doi:10.1016/j.seppur.2007.07.036.

Mostafavi, S. T., Mehrnia, M. R. and Rashidi, A. M., Preparation of nanofilter from carbon nanotubes for application in virus removal from water, Desalination, 238(1-3), 271-280(2009).

doi:10.1016/j.desal.2008.02.018.

Peng, X., Luan, Z., Ding, J., Di, Z., Li, Y. and Tian, B., Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water, Mater Lett., 59(4), 399-403(2005).

doi:10.1016/j.matlet.2004.05.090.

Rao, G. P., Lu, C. and Su, F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review, Sep. Purif. Technol., 58(1), 224-231(2007).

doi:10.1016/j.seppur.2006.12.006.

Savage, N. and Diallo, M. S., Nanomaterials and water purification: Opportunities and challenges, J. Nanopart. Res., 7, 331-342(2005).

doi:10.1007/s11051-005-7523-5.

Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R. and Ajayan, P. M., Carbon nanotube filters, Nat. Mater., 3(9), 610-614(2004).

doi:10.1038/nmat1192.

Su, F. and Lu, C., Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes, J. Environ. Sci. Heal., 42(11), 1543-1552(2007).

doi: 10.1080/10934520701513381

Upadhyayula, V. K. K., Deng, S., Mitchell, M. C., Smith, G. B., Nair, V. K. and Ghoshroy. S., Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates, Water Sci. Technol., 58(1), 179-184(2008).

doi:10.2166/wst.2008.634.

Upadhyayula, V. K. K., Deng, S., Smith, G. B. and Mitchell, M. C., Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram, Water Res., 43(1), 148-156(2009).

doi:10.1016/j.watres.2008.09.023.

Yan, H., Gong, A., He, H., Zhou, J., Wei, Y. and Lv, L., Adsorption of microcystins by carbon nanotubes, Chemosphere, 62(1), 142-148(2006).

doi:10.1016/j.chemosphere.2005.03.075.

Yan, H., Pan, G., Zou, H., Li, X. L. and Chen, H., Effective removal of microcystins using carbon nanotubes embedded with bacteria, Chinese Sci. Bull., 49(16), 1694-1698(2004).

doi:10.1007/BF03184300.

Yan, X. M., Shi, B. Y., Lu, J. J., Feng, C. H., Wang, D. S. and Tang, H. X., Adsorption and desorption of atrazine on carbon nanotubes, J. Colloid. Interface Sci., 321(1), 30-38(2008).

doi:10.1016/j.jcis.2008.01.047.

Yang, K., Zhu, L. and Xing, B., Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials, Environ. Sci. Technol., 40(6), 1855-1861(2006).

doi:10.1021/es052208w.

Yoon, Y. H. and Nelson, J. H., Application of gas adsorption kinetics, I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J., 45(8), 509-516(1984).

doi:10.1080/15298668491400197.

 

>>