Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Influence of Hole and Electron Transport Materials on Perovskite Sensitized Solar Cells-A Review


Organic/Inorganic lead halide perovskite solar cells (PrSCs) have received considerable attention in recent years as the promising materials capable of developing high performance photovoltaic devices due to their high light absorption coefficient, tunable band gap, high carrier mobility, long carrier diffusion length, low temperature processing and abundant elemental constituents. At present, perovskite solar cells have been ushered in a new era of renewed efforts towards  increasing the efficiency and lowering the cost of solar cells. Recently, Perovskite solar cells have reached an efficiency of nearly 20%. This technology combines the benefits of Dye Sensitized Solar Cells (DSSCs), Organic Photovoltaics (OPVs), and thin film solar cells. In this review, we have reported the brief  prior art perspective of perovskite based solar cells, take a cognizance of the current state-of-the-art, highlight the challenges and the opportunities. This review also gives an overview on the impact of different hole transport materials (HTM), electron transport materials (ETM) and the role of Carbon nanomaterials as ETM, HTM and electrode materials.

Article Type: Research Article

Corresponding Author: S. Karthikeyan 3  


This article has not yet been cited.

L. Sampath Kumar  1,   D. P. Bhatt 2,  S. Karthikeyan 3*.  

1. Department of Physics, EBET Group of Institutions, Kangayam, Tiruppur dt., TN, India.

2. Intellectual Property Rights management Group, CSIR, National Physical Laboratory, New Delhi, India.

3. Department of Chemistry, Chikkanna Government Arts College, Tiruppur, TN, India.

J. Environ. Nanotechnol., Volume 5, No. 2 pp.48-64
ISSN: 2279-0748 eISSN: 2319-5541
Download Citation


Abrusci, A., Stranks, S. D., Docampo, P., Yip, H. L., Jen, A. K. Y. and Snaith, H. J., High performance perovskite polymer hybrid solar cells via electronic coupling with fullerene monolayers, Nano Lett., 13(7), 3124-3128(2013).


Ball, J. M., Lee, M. M., Hey, A. and Snaith, H. J., Low-temperature processed meso superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 6(6), 1739(2013).


Bi, D., Yang, L., Boschloo, G., Hagfeldt, A. and Johansson, E. M. J., Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells, J. Phys. Chem. Lett., 4(9), 1532-1536(2013).


Burghard, M., Electronic and vibrational properties of chemically modified single-wall carbon nanotubes, Surf. Sci. Rep., 58(1-4), 1-109(2005).


Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K. and Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nat., 499(7458), 316-320(2013).


Cai, B., Xing, Y., Yang, Z., Zhang, W. H. and Qiu, J., High performance hybrid solar cells sensitized by organolead halide perovskites, Energy Environ. Sci., 6(5), 1480(2013).


Cai, M., Tiong, V. T., Hreid, T., Bell, J. and Wang, H., An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells, J. Mater. Chem. A, 3(6), 2784-2793(2015).


Carnie, M. J., Charbonneau, C., Davies, M. L., Troughton, J. and Watson, T. M., Wojciechowski, K., Worsley, D. A., A one-step low temperature processing route for organolead halide perovskite solar cells, Chem. Comm., 49(72), 7893-7895(2013).


Nam, C. Y., Wu, Q., Su, D., Chiu, C., Tremblay, N. J., Nuckolls, C. and Black, C. T., Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices, J. Appl. Phys., 110(6), 64307(2011).


Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. S., Wang, H. H. and Yang, Y., Planar Heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136(2), 622-625(2014).


Chiang, C. H., Tseng, Z. L. and Wu, C. G., Planar heterojunction perovskite/PC71BM solar cells with enhanced open circuit voltage via a (2/1)-step spin-coating process, J. Mater. Chem. A, 2, 15897-15903(2014).


Christians, J. A., Fung, R. C. M. and Kamat, P. V., An inorganic hole conductor for organo lead halide perovskite solar cells- Improved hole conductivity with copper iodide, J. Am. Chem. Soc., 136(2), 758-764(2014).


Christians, J. A., Manser, J. S. and Kamat, P. V., Best practices in perovskite solar cell efficiency measurements- avoiding the error of making bad cells look good, J. Phys. Chem. Lett., 6(5),  01-13(2015).


Chung, I., Lee, B., He, J., Chang, R. P. and Kanatzidis, M. G., All solid-state dye-sensitized solar cells with high efficiency, Nat., 485(7399), 486-489(2012).


De Jong, M. P., Van IJzendoorn, L. J. and  De Voigt, M. J. A., Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes, Appl. Phys. Lett., 77(14), 2255-2257(2000).


Dobrzańska-Danikiewicz, A. D. and Drygała, A., Strategic development perspectives of laser processing on polycrystalline silicon surface, Arch. Mater. Sci. Eng., 50(1), 5-20(2011).

Dobrzański, L.A., Drygała, A. and Prokopiuk vel Prokopowicz, M., Selection of components for photovoltaic system, Arch. Mater. Sci. Eng., 62(2), 53-59(2013).

Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E and Snaith, H. J., Efficient organo etal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nat. Comm., 4, 2761(2013).


 Bi, D., Yang, L.,  Boschloo, G.,  Hagfeldt, A., and Erik M. J. Johansson, Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells, J. Phys. Chem. Lett., 4(9), 1532-1536(2013).

doi: 10.1021/jz400638x

Edri, E., Kirmayer, S., Cahen, D. and Hodes, G., High Open-Circuit Voltage Solar Cells Based on Organic/Inorganic Lead Bromide Perovskite, J. Phys. Chem. Lett., 4(6), 897-902(2013).

doi: 10.1021/Jz400348

Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston M. B. and Herz, L. M., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci. 7(3), 982-988(2014).

doi: 10.1039/C3EE43822H

Frank, S., Poncharal, P., Wang, Z. L. and de Heer, W. A., Carbon nanotube quantum resistors, Sci., 280(537), 1744-1746(1998).

doi: 10.1126/science.280.5370.1744

Gillet, M., Aguir, K., Lemire, C., Gillet, E. and Schierbaum, K., The structure and electrical conductivity of vacuum-annealed WO3 thin films, Thin Solid Films, 467(1-2), 239-246(2004).


Gratzel, C. and Zakeeruddin, S.M., Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters, Mater. Today, 16(1-2), 11-18(2013).


Han, T. H., Lee, Y., Choi, M. R., Woo, S. H., Bae, S. H., Hong, B. H., Ahn, J. H. and Lee, T. W., Extremely efficient flexible organic light-emitting diodes with modified graphene anode, Nat. Photonics, 6(2),105-110(2012).


Hardin, B. E., Snaith, H. J. and McGehee, M. D., The renaissance of dye sensitized solar cells, Nat. Photonics, 6(3), 162-169(2012).


Im, J. H., Lee, C. R., Lee, J. W., Park, S. W. and Park, N. G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized  Solar Cell,  Nanoscale, 3(10),  4088(2011).


Jeon, N. J., Lee, J., Noh, J.H., Nazeeruddin, M. K., Grätzel, M. and Seok, S. I., Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials, J. Amer. Chem. Soc., 135(51), 19087-19090(2013).


Kalaiselvan, S., Balachandran, K., Karthikeyan, S. and Venckatesh, R., Botanical Hydrocarbon sources based by spray pyrolysis method for DSSC applications, Silicon, 8(3), 1-7(2016).


Kamat, P. V., Quantum Dot Solar Cells, The Next Big Thing in Photovoltaics, J. Phys. Chem. Lett., 4(6), 908-918(2013).


Kim, B. J., Kim,  dong, H., Lee, Y. Y., Shin, H. W., Han, G. S., Hong, J. S. and Jung, H. S., Highly efficient and bending durable perovskite solar cells toward wearable power source, Energy Environ. Sci., 8(3), 916-921(2015).


Kim, H., Lim, K. G. and Lee, T. W., Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers, Energy Environ. Sci., 9(1), 12-30(2016).


Kim, H., Bae, S. H., Han, T. H., Lim, K. G., Ahn, J. H. and Lee, T. W., Organic solar cells using CVD grown graphene electrodes, Nanotech., 25(1), 014012(2014).


Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A. and Park, N. G., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,  Sci. Rep., 2(7436), 591(2012). 


Kim, H. S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E. J., Park, N. G. and Bisquert, J., Mechanism of carrier accumulation in perovskite thin-absorber solar cells, Nat. Comm., 4, 2242(2013).


Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(17), 6050-6051(2009).


Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds, ECS Meeting, 27, MA2008-02(2008).

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. and Snaith, H. J., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Sci., 338(6107), 643-647(2012).


Lee, S. J., Kim, Y. H., Kim, J. K., Baik, H., Park, J. H., Lee, J., Nam, J., Park, J. H., Lee, T. W., Yi, G. R. and Cho, J. H., A roll-to-roll welding process for planarized silver nanowire electrodes, Nanoscale, 6(20), 11828-11834(2014).

doi: 10.1039/C4NR03771E

Li, Z., Kulkarni, S.A., Boix, P.P., Shi, E., Cao, A., Fu, K., Mhaisalkar, S.G., Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells, ACS Nano, 8(7), 6797-6804(2014).


Li, C., Wang, F., Xu, J., Yao, J., Zhang, B., Zhang, C., Xiao, M., Dai, S., Li, Y. and Tan, Z., Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination, Nanoscale, 7(21), 9771-9778(2015).

doi: 10.1039/c4nr06240j

Liang, P. W., Chueh, C. C., Xin, X. K., Zuo, F., Williams, S. T., Liao, C. Y. and Jen, A. K. Y., High-performance planar-heterojunction solar cells based on ternary halide large-band-gap perovskites, Adv. Energy Mater., 5(1), (2015).


Liang, P. W., Liao, C. Y., Chueh, C. C., Zuo, F., Williams, S. T., Xin, X. K., Jen, A. K. Y., Additive enhanced crystallization of solution processed perovskite for highly efficient planar heterojunction solar cells, Adv. Mater., 26(22), 3748-3754(2014).


Lin, Q., Armin, A., Nagiri, R. C. R., Burn, P. L. and Meredith, P., Electro-optics of perovskite solar cells, Nat. Photonics, 9(2), 106-112(2015).


Liu, D., Gangishetty, M. K. and Kelly, T. L., Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells, J. Mater. Chem. A, 2(46), 19873-19881(2014).


Liu, D. and Kelly, T. L., Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photonics, 8(2), 133-138(2013).


Liu, M., Johnston, M. B. and Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition, Nat., 501(7467), 395-398(2013).


Liu, C., Wang, K., Du, P., Meng, T., Yu, X., Cheng, S.Z.D. and Gong, X., High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer, ACS Appl. Mater. Interfaces, 7(2), 1153-1159(2015).

doi: 10.1021/am506869k

Liu, X., Jiao, W., Lei, M., Zhou, Y., Song, B. and Li, Y., Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells, J. Mater. Chem. A, 3(17), 9278-9284(2015).

doi: 10.1039/c4ta05881j

Lu, L., Joannopoulos, J. D. and Soljacic, M., Topological photonics, Nat. Photon, 8(11), 821-829 (2014).


Malinkiewicz, O., Yella, A., Lee, Y.  H., Espallargas, G. M. M., Graetzel, M., Nazeeruddin, M. K. and Bolink, H. J., Perovskite solar cells employing organic charge transport layers, Nat. Photonics, 8(2), 128-132(2014).


Min, J., Zhang, Z. G., Hou, Y., Quiroz, C. O. R., Przybilla, T., Bronnbauer, C., … and Brabec, C. J., Interface engineering of perovskite hybrid solar cells with solution-processed perylene-diimide heterojunctions toward high performance, Chem. Mater., 27(1), 227-234(2015).


Nam, C. Y., Wu, Q., Su, D., Chiu, C., Tremblay, N. J., Nuckolls, C. and Black, C. T., Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices, J. Appl. Phys., 110(6), 64307(2011).


Nayak, P. K., Perovskite solar cells: an emerging photovoltaic technology, Adv. Mater., 18(2), 65-72(2014).

doi:10.1002/ adma.201304620

Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A. A.,Snaith, H. J., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications,  Energy  Environ.  Sci., 7(9), 3061-3068(2014).


Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. and Seok, S. I., Chemical management for colorful, efficient and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 13(4), 1764-1769(2013).


Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Hayase, S., CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1060 nm, J. Phys. Chem. Lett., 5(6), 1004-1011(2014).


O’Regan, B., Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nat., 353, 737-740(1991).


Paek, S., Cho, N., Choi, H., Jeong, H., Lim, J.S., Hwang, J. Y., Lee, J. K. and Ko, J., Improved external quantum efficiency from solution processed CH3NH3PBI3 perovskite/PC71BM planer heterojunction for high efficiency hybrid solar cells, J. Phys. Chem. C, 118(45), 25899-25905(2014).

doi: 10.1021/jp508162p

Park, N. G., Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell, J. Phys. Chem. Lett., 4(15), 2423-2429(2013).


Park, N. G., Perovskite solar cells: An emerging photovoltaic technology, Mater. Today, 18(2), 65-72(2015).


Qin, P., Domanski, A. L., Chandiran, A. K., Berger, R., Butt, H. J., Dar, M. I., … and Grätzel, M., Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells, Nanoscale, 6(3), 1508-1514(2014).


Poorkazem, K., Liu, D. and Kelly, T. L., Fatigue resistance of a flexible, efficient and metal oxide-free perovskite solar cell, J. Mater. Chem. A, 3(17), 9241-9248(2015).


Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H. and Yang, S., All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays, Nanoscale, 5(8), 3245-3248(2013).


Roldan-Carmona, C., Malinkiewicz, O., Soriano, A., Minguez Espallargas, G., Garcia, A., Reinecke, P., Bolink, H. J., Flexible high efficiency perovskite solar cells, Energy  Environ. Sci., 7(3), 994-997(2014).


Schulz, P., Whittaker-Brooks, L. L., MacLeod, B. A., Olson, D. C, Loo, Y. L. and Kahn, A., Electronic level alignment in inverted organometal perovskite solar cells, Adv. Mater. Interface., 2(7), 1400532(2015).

doi: 10.1002/admi.201400532

Service, R. F.,  Turning  up  the  light,  Sci.,  342(6160), 794-795,797(2013).


Service, R. F., Perovskite Solar Cells Keep On Surging, Science, 344(6183), 458(2014).


Shao, Y., Xiao, Z., Bi, C., Yuan, Y. and Huang, J., Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Comm., 5, 5784(2014).

doi: 10.1038/ncomms6784

Shi, Y., Wang, K., Du, Y., Zhang, H., Gu, J., Zhu, C. and Ma, T., Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%, Adv. Mater., 25(32), 4413-4419(2013).


Shiraishi, M. and Ata, M., Work function of carbon nanotubes, Carbon, 39(12), 1913-1917(2001).


Snaith, H. J., Estimating the maximum attainable efficiency in dye-sensitized solar cells, Adv. Funct. Mater., 20(1), 13-19(2010).


Snaith, H. J., Perovskites: The emergence of a new era for low-cost, high performance perovskite solar cells, J. Phys. Chem. Lett., 4(21), 3623-3630(2013).


Snaith, H. J. and Grätzel, M., Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells, Appl. Phys. Lett., 89(26), 262114(2006).


Snaith, H. J. and Grätzel, M., Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD, Adv. Mater., 19(21), 3643-3647(2007).


Solar, P., Li, Z., Kulkarni, S. A., Boix, P. P., Shi, E., Cao, A., atabyal, S. K., Laminated Carbon Nanotube Networks for Metal Electrode-Free, ACS Nano, 8(7), 6797-6804(2014).


Song, T. B., Chen, Q., Zhou, H., Jiang, C., Wang, H. H., and Yang, Y., Perovskite solar cells: film formation and properties, J. Mater. Chem. A, 3(17), 9032-9050(2015).


Song, X., Wang, W., Sun, P., Ma, W. and Chen, Z. K., Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells, Appl. Phys. Lett., 106(3), 033901(2015).


Stoumpos, C. C., Malliakas, C. D. and Kanatzidis, M. G., Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52(15), 9019-9038(2013).


Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Miura, N., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Sci., 342(6156), 341-344(2013).


Ulbricht, R., Lee, S. B., Jiang, X., Inoue, K., Zhang, M., Fang, S., Zakhidov, A. A., Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells, Sol. Energy Mater. Sol. Cells., 91(5), 416-419(2007).


Yin, W. J., Shi, T. and Yan, Y., Unique properties of halide perovskites as possible origins of the superior solar cell performance, Adv. Mater., 26(27), 4653-4658(2014).


Wang, X., Li, Z., Xu, W., Kulkarni, S. A., Batabyal, S. K., Zhang, S., Wong, L. H., TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotubes  electrode,  Nano Energy,  11, 728-735(2015).


Wang, J., Ball, J., Barea, E., Alexander-Webber, A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J. and Snaith, H., Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells, Nano Lett., 14(2), 724−730(2014).

doi: 10.1021/nl403997a

Wang, F., Valentin, C. and Pacchioni, G., Rational band gap engineering of wo3 photocatalyst for visible light water splitting, Chem. Cat. Chem., 4(4), 476−478(2012).


Wang, Q. K., Wang, R. B., Shen, P. F., Li, C., Li, Y. Q., Liu, L. J., Duhm, S. and Tang, J. X., Energy level offsets at lead halide perovskite/organic hybrid interfaces and their impacts on charge separation, Adv. Mater. Interfaces, 2(3), 1400528(2015).

doi: 10.1002/admi.201400528

Wang, K., Shi, Y., Dong, Q., Li, Y., Wang, S., Yu, X., Wu, M. and Ma, T., Low-temperature and solution-processed amorphous WO X as electron-selective layer for perovskite solar cells, J. Phys. Chem. Lett., 6(5), 755-759(2015).

doi: 10.1021/acs.jpclett.5b00010

Wang, K. C.,  Jeng, J. Y., Shen, P. S., Chang, Y. C.,  Diau, E. W. G., Tsai, C. H., Chao, T. Y.,  Hsu, H. C., Lin, P. Y., Chen, P., Guo, T. F. and  Wen, T. C., p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Sci. Rep., 4, 4756(2014).

doi: 10.1038/srep04756

Wojciechowski, K., Saliba, M., Leijtens, T., Abate, A. and Snaith, H. J., Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency, Energy Environ. Sci., 7(3), 1142-1147(2014).


Wu, Z., Bai, S., Xiang, J., Yuan, Z., Yang, Y., Cui, W., Sun, B., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor, Nanoscale, 6(18), 10505-10510(2014).


Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y. and Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci., 7(8), 2619-2623(2014).

doi: 10.1039/c0ee00278j

Yella, A., Heiniger, L. P., Gao, P., Nazeeruddin, M. K. and Gratzel, M., Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency, Nano Lett., 14(5), 2591-2596(2014).


Yeo, J. S., Kang, R., Lee, S., Jeon, Y. J., Myoung, N., Lee, C. L., Kim, D. Y., Yun, J. M., Seo, Y. H., Kim, S. S. and Na, S. I., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer, Nano Energy, 12, 96-104(2015).


Yin, W. J., Shi, T. and Yan, Y., Unique properties of halide perovskites as possible origins of the superior solar cell performance, Adv. Mater., 26(27), 4653-4658(2014).


You, J., Hong, Z., Yang, Y. M., Chen, Q., Cai, M., Song, T., Ang, Y., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility, ACS Nano, 8(2), 1674-1680(2014).


You, J., Yang, Y., Hong, Z., Song, T. B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W. H., Li, G. and Yang, Y., Moisture assisted perovskite film growth for high performance solar cells, Appl. Phys. Lett., 105(18), 183902(2014).


Yu, K. and Chen, J., Enhancing solar cell efficiencies through 1-D nanostructures, Nanoscale Res. Lett., 4(1), 1-10(2009).


Zhang, Q. F., Dandeneau, C. S., Zhou, X. Y. and Cao, G. Z., ZnO nanostructures for dye sensitized solar cells, Adv. Mater., 21(41), 4087-4108(2009).


Zhang, H., Azimi, H., Hou, Y., Ameri, T., Przybilla, T., Spiecker, E., Kraft, M., Scherf, U. and Brabec, C. J., Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer, Chem.Mater., 26, 5190-5193(2014).

doi: 10.1021/cm502864s

Zhao, D., Sexton, M., Park, H. Y., Baure, G., Nino, J. C. and So, F., High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer, Adv. Energy Mater., 5(6), 1401855(2015).

doi: 10.1002/aenm.201401855

Wu, Z., Bai, S., Xiang, J., Yuan, Z., Yang, Y., Cui, W. and Sun, B., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor, Nanoscale, 6(18), 10505-10510(2014).


Zhou, H. P., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S.,Yang, Y., Interface engineering of highly efficient perovskite solar cells, Sci., 345(6196), 542-546(2014).


Zhou, Y., Fuentes-Hernandez, C., Shim, J., Meyer, J., Giordano, A. J., Li, H., Winget, P., Papadopoulos, T., Cheun, H., Kim, J., Fenoll, M., Dindar, A., Haske, W., Najafabadi, E., Khan, T. M., Sojoudi, H., Barlow, S., Graham, S., Brédas, J. L., Marder, S. R., Kahn, A. and Kippelen, B., A universal method to produce low-work function electrodes for organic electronics, Sci., 336(6079), 327-332(2012).

doi: 10.1126/science.1218829