Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Effect of Astigmatism on the Tight Focusing of Azimuthally Polarized Lorentz-Gauss Vortex Beam


Effect of astigmatism on the tight focusing properties of azimuthally polarized Lorentz–Gauss vortex beam is investigated numerically by the vector diffraction theory. Thus for non-vortex Lorentz beam the presence of astigmatism largely deform the focal structure and shifted the maximum intensity axially. However for the vortex Lorentz beam axially shifting with slightly deformation is observed. The author expect such a study is important in practical applications such as optical tweezers, laser printing and material processing.

Article Type: Research Article

Corresponding Author: K. B. Rajesh 6  

Email: rajeshkb@gmail.com

This article has not yet been cited.

R. Murugesan 1,  N. Pasupathi 2,  M. Udhayakumar 3,  M. Lavanya 4,  R. C. Saraswathi 5,  K. B. Rajesh 6*.  

1. Department of Physics, Erode Arts College, Erode, TN, India.

2. epartment of Physics, Erode Arts College, Erode, TN, India.

3, 6. Department of Physics, Chikkanna Government Arts College, Tirupur, TN, India.

4. Department of Physics, PSGR Krishnammal College for Women, Coimbatore, TN, India.

5. Department of Physics, Government Arts College, Dharmapuri, TN, India.

J. Environ. Nanotechnol., Volume 5, No.2 pp. 25-29
ISSN: 2279-0748 eISSN: 2319-5541
Download Citation


Biss, D. P. and Brown, T. G., Primary aberrations in focused radially polarized vortex beams, Opt. Express, 12, 384-393(2004).


Kant, R., An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations,  I: Spherical aberration, curvature of field, and distortion, J. Mod. Opt., 40(11), 2293-2310(1993).


Kant, R., An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma, J. Mod. Opt., 42(2), 299-320(1995).


Li, J., Chen,Y., Xu, S., Wang, Y., Zhou, M., Zhao, Q., Xin, Y. and Chen, F.,  Propagation properties of lorentz beam in uniaxial crystals orthogonal to the optical axis, Opt. Laser Technol., 43(3), 506-514(2011).


Richards, B. and Wolf, E., Electromagnetic diffraction in optical systems. II. Structure of the Image field in an aplanatic system.,  Proc. R. Soc. London, Ser. A, 253(1274), 358-379(1959).


Roichman, Y.,  Waldron, A., Gardel, E.  and Grier, D. G., Optical traps with geometric aberrations, Appl. Opt., 45(15), 3425-3429(2006).


Unno, Y.,  Ebihara, T. and Levenson, M. D.,  Impact of mask errors and lens aberrations on the image formation of a vortex mask, J. Microlithogr. Microfabr. Microsyst., 4(2), 023006-023017(2005).   

doi: 10.1117/1.1897392

Visser, T. D.  and. Wiersma, S. H., Spherical aberration and the electromagnetic field in high-aperture systems, J. Opt. Soc. Am. A, 8(9), 1404-1410(1991).


Xiumin Gao, Dawei Zhang, Mei Ting and Songlin Zhuang,  Focus shaping of linearly polarized lorentz beam with sine-azimuthal variation wave frontOptik., 124(15), 2079-2084(2013).


Youngworth, K. S. and  Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Opt. Express., 7(2), 77-87(2000).


Yu, H., Xiong, L. and Lü, B., Nonparaxial lorentz and lorentz-gauss beams, Optik., 121(16), 1455-1461(2010).


Zhou P.,  Wang X.,  Ma, Y. and Liu, Z., Propagation properties of a lorentz beam array, Appl. Opt., 49(13), 2497-2503(2010).