Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541
CODEN:JENOE2

Generation of Sub Wavelength Focal Hole Segment using Azimuthally Polarized Higher Order Beam by High NA Parabolic Mirror

Abstract

The focusing properties of a tight focusing of higher order azimuthally polarized beam through a high numerical aperture parabolic mirror are numerically investigatedbased on vector diffraction theory. It shows that the three-dimensional intensity distributions in the vicinity of the focus is dependent on the polarization rotation angle, pupil to beam radio and numerical aperture value.Additionally, somegenerated focal segment is a splitted holes and focal hole increase in the axial direction. Such a focal hole segment is highly useful for trapping particles, laser cutting, microscopy and the manipulation of optical traps of low refractive index particles.

Article Type: Research Article

Corresponding Author: K.B. Rajesh 4  

Email: rajeskb@gmail.com

This article has not yet been cited.

V. Senthilkumar 1,  N.Umamageswari 2,  M.Udhayakumar  3,  K.B. Rajesh 4*.  

1, 3, 4. Department of Physics, Chikkanna Government Arts College, Tirupur, Tamilnadu,India

2. Department of Physics, Research and Development Centre, Bharathiar University, Coimbatore,TN, India

J. Environ. Nanotechnol. Volume 5, No.1 pp. 13-16
ISSN: 2279-0748 eISSN: 2319-5541
ENT161184.pdf
Download Citation

Reference

Bandres, M. A. and Gutiérrez-Vega, J. C., Cartesian beams, Opt. Lett., 32(23), 3459-3461(2007).

doi: 10.1364/OL.32.003459

Braat, J. J. M., Dirksen, P., Janssen, A. J. E. M. and Van de Nes, A. S., Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system, J. Opt. Soc. Am. A., 20, 2281-2292(2003).

Braat, J. J. M., Dirksen, P., Janssen, A. J. E. M. Van Haver, S. and Van de Nes, A. S., Extended Nijboer–Zernike approach to aberration and bire fringence retrieval in a high-numerical-aperture optical system, J. Opt. Soc. Am. A., 22, 2635-2650(2005).

doi:10.1364/JOSAA.22.002635

Curtis, J. E., Koss, B. A. and Grier, D. G., Dynamic holographic optical tweezers, Opt. Commun., 207, 169-175(2002).

Dong, X. A. and Naqwi, A., Far-field distribution of double-heterostruture diode laser beams, Appl. Opt., 32, 4491-4494(1993).

doi:10.1364/AO.32.004491

Dumke, W. P.,  The Angular beam divergence in double-heterojunction lasers with very thin active regions,  IEEE J. Quantum Electron., 11(7), 400–402,(1975).

doi:10.1109/JQE.1975.1068627

Ganic, D., Gan, X., Gu, M., Focusing of doughnut laser beams by a high numerical aperture objective in free space, Opt. Express., 11, 2747-2752(2003).

Gawhary, O. E. and Severini, S., Lorentz beams and symmetry properties in paraxial optics, J. Opt. A, Pure Appl. Opt., 8(5), 409–414,(2006). doi:10.1088/1464-4258/8/5/007

Gibson,  G., Courtial, J., Padgett, M., Vasnetsov, M.,  Pas’ko, V., Barnett, S.  and Franke-Arnold, S., Free-space information transfer using light beams carrying orbital angular momentum, Opt. Express., 12(22), 5448-5456(2004).

 doi:10.1364/OPEX.12.005448

Gu, M., Advanced optical imaging theory, Springer, Heidelberg, 2000.

He, H., Friese, M. E., Heckenberg, N. R. and Rubinsztein-Dunlop, H., Phy. Rev. Lett., 75(5), 826-832(1995).

doi:10.1103/PhysRevLett.75.826

Ichiliura, I., Hayashi, S. and Kino, G. S., High-density optical recording using a solid immersion lens, Appl. Opt., 36, 4339-4348(1997).

doi:10.1364/AO.36.004339

Kant, R., An analytical method of vector diffraction for focusing optical systems with seidel aberrations II: Astigmatism and coma, J. Mod. Opt., 42, 299-320(1995).

Kant, R., An analytical solution of vector diffraction for focusing optical systems with seidel aberrations I: Spherical aberration, curvature of field and distortion,  J. Mod. Opt., 40, 2293-2310(1993).

Maia Neto, P. A. and Nussenzveig, H. M., Theory of optical tweezers, Europhys. Lett., 50, 702-708(2000).

doi:10.1209/epl/i2000-00327-4

Naqwi, A. and Durst, F., Focusing of diode laser beams: a simple mathematical model,  Appl. Opt., 29(12), 1780-1785(1990).

doi: 10.1364/AO.29.001780

Rui, F.,  Zhang, D., Ting, M.,  Gao, X. and Zhuang, S., Focusing of  linearly  polarized  Lorentz-Gauss  beam  with  one  optical  vortex, Optik., 124, 2969-2973(2013).

doi: 10.1016/j.ijleo.2012.09.011

Sun, Q., Li, A., Zhou, K., Liu, Z., Fang, G. and  Liu, S., Virtual source for rotational symmetric Lorentz-Gaussian beam, Chinese Optics Letters., 10, 062601(2012).

doi:10.3788/col201210.062601

Torre, A.,  Evans, W. A. B., Gawhary, O. E. and Severini, S., Relativistic Hermite polynomials and Lorentz beams, J. Opt. A, Pure Appl. Opt., 10 (11), 115007(2008).

doi:10.1088/1464-4258/10/11/115007

Van Enk, S. J.  and Kimble, H. J., Single atom in free space as a quantum aperture, Phys. Rev. A., 61, 051 802(R)(2000).

Visser, T. D. and Wiersma, S. H., Diffraction of Converging Electromagnetic Waves, J. Opt. Soc. Am. A., 9, 2034-2047(1992).

Visser, T. D. and Wiersma, S. H., Spherical aberration and the electromagnetic field in high-aperture systems, J. Opt. Soc. Am. A., 8, 1404-1410(1991).

Wilson, T., Confocal Microscopy (London: Academic Press) (1990).

doi:10.1081/E-EBBE-120024153

Yang, J., Chen, T., Ding, G. and Yuan, X., Semiconductor lasers and applications III, 682402 Proceedings of SPIE, 6824 68240A, (2008).  

doi:10.1117/12.786203

Zhou, G. and Chen, R., Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system, Appl. Phy. B., 107,183-193(2012).

Zhou, G. Q. and Chu, X. X., Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere, Opt. Express, 18(2), 726-731(2010).

doi:10.1364/OE.18.000726

Zhou, G. Q., Focal shift of focused truncated Lorentz-Gauss beam, J. Opt. Soc. Am. A., 25(10),  2594-2599(2008).

doi:10.1364/JOSAA.25.002594

Zhou, G. Q., Nonparaxial propagation of a Lorentz-Gauss beam,  J. Opt. Soc. Am. B., 26(1),141-147(2009).

doi:10.1364/JOSAB.26.000141

Zhou, G. Q., Nonparaxial propagation of a Lorentz-Gauss beam, J. Opt. Soc. Am. B., 26(1), 141-147(2009).

Zhou, G. Q., Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system, Opt. Express, 18(5), 4637-4643(2010).

doi:10.1364/OE.18.004637

Zhou, G., Beam  propagation factors of a Lorentz–Gauss beam, Appl. Phy. B., 96, 149-153(2009).

doi:10.1007/s00340-009-3460-9

Zhou, G., Nonparaxial propagation of a Lorentz-Gauss beam, J. Opt. Soc. Am. B., 25, 2594-2599(2008).

doi:10.1364/JOSAB.26.000141

>>