Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Focusing Properties of Spirally Polarized Axisymmetric QBG Beams with 4pi Configuration


4Pi Focusing properties of spirally polarized axisymmetric QBG beams are investigated theoretically by vector diffraction theory. Calculation results show that intensity distribution in focal region can be altered considerably by beam parameter μ and spiral parameter C that indicates polarization spiral degree.By properly tuning the beam parameter and spiral parameter generated multiple focal structure for potential application are also dicussed.The author expect such an investigation is worth will for optical manipulation and material processing technologies.

Article Type: Research Article

Corresponding Author: K.B. Rajesh 4  


This article has not yet been cited.

V. Senthilkumar 1,  L.Banupriya 2,  M. Udhayakumar 3,  K.B. Rajesh 4*.  

1, 2, 3, 4. Department of Physics, Chikkanna Government Arts College, Tiruppur, TN. India

J. Environ. Nanotechnol. Volume 5, No.1 pp. 26-32
ISSN: 2279-0748 eISSN: 2319-5541
Download Citation


Bokor, N. and Davidson, N., Toward a spherical spot distribution with 4π focusing of radially polarized light, Opt. Lett., 29(17), 1968-1970(2004).


Caron, C. F. R., Potvliege, R. M., Bessel-modulated gausian beams with quadratic    radial dependence, Opt. Commun., 164(1-3), 83-93(1999).


Chen, Z. and Zhao, D., 4Pi focusing of spatially modulated radially polarized vortex beams, Opt. Lett., 37(8), 1286-1288(2012).


Dorn, R.,  Quabis, S. and Leuchs, G., Sharper focus for a radially polarized light beam, Phys. Rev. Lett., 91, 233901-233908 (2003).


Hao, B., Spirally in homogeneous polarization and its application in beam shaping, Dissertation at University Minnesota, 2007.

Hell, S. and Stelzer, E. H. K., Properties of a 4Pi confocal fluorescence microscope, J. Opt. Soc. Am. A., 9(12), 2159-2166(1992).


Hricha, Z. and Belafhal, A., Focal shift in the axisymmetric Bessel-modulated gaussian beam, Opt. Commun., 255(4-6), 235-240(2005).


Kozawa, Y., Hibi, T., Sato, A., Horanai, H., Kurihara, M., Hashimoto, N., Yokoyama, H., Nemoto, T. and Sato, S., Creation of polarization gradients from superposition of counter propagating vector LG beams, Opt. Express, 19(17), 15947-15954(2011).


Li, X., Lan, T. -H., Tien, C. -H. and Gu, M., Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam, Nat. Commun., 3, 998(2012).


Sick, B., Hecht, B. and Novotny, L., Orientational imaging of single molecules by annular illumination, Phys. Rev. Lett., 85(21), 4482-4485(2000).      


Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C. and Chong, C. T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nat. Photonics., 2, 501-505(2008).


Wang, J., Chen, W. and Zhan, Q., Creation of uniform three-dimensional optical chain through tight focusing of space-variant polarized beams, J. Opt., 14(5), 055004(2012).

Wang, X. and Lü, B., The beam propagation factor and far-field distribution of Bessel modulated gaussian beams, Opt. Quant. Electron., 34(11), 1071-1077(2002).

doi: 10.1023/A:1021160303678

Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Opt. Express, 7(2), 77-87(2000).


Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photon., 1(1), 1-57(2009).


Zhang, Y., Suyama, T. and Ding, B., Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam, Opt. Lett., 35, 1281-1283(2010).

doi: 10.1364/OL.35.001281.

Ziyang Chen and Daomu Zhao, 4Pi focusing of spatially modulated radially polarized vortex beams, Opt. Lett., 37(8), 1286-1288(2012).