Open Access

Toxicology of Carbon Nanotubes - A Review

P. Khalid, p.khalid@live.com
Department of Biotechnology, P. A. College of Engineering, VTU, Mangalore, Karnataka, India.
M. A. Hussain, Department of Electrical & Computer Engineering, King Abdulaziz University, Jeddah, KSA. V. B. Suman, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India. A. B. Arun Yenepoya Research Centre, Yenepoya University, Mangalore, Karnataka, India.


J. Environ. Nanotechnol., Volume 4, No 4 (2015) pp. 62-75

https://doi.org/10.13074/jent.2015.12.154176

PDF


Abstract

A large number of nanoparticles are present in the environment in which some are unintentionally produced; ultra fine particles or intentionally produced engineered nanoparticle (ENPs). The carbon based ENPs include single-walled and multi walled carbon nanotubes (SWCNTs and MWCNTs), spherical fullerenes and dendrimers. Among all ENPs, the carbon based ENPs are attracting much attention for potential biomedical applications, such as biosensors design, drug design, drug delivery, tumor therapy and tissue engineering, because of their electronic, optical and mechanical properties. The pristine CNTs are inert in nature so it needs to be functionalized to make it reactive. The functionalization appends different functional group e.g. C=O, C-O, -OH and -COOH to CNTs, which make it dispersible and suitable for different applications. The biocompatibility of these functionalized CNTs and their composite has to be tested before real time applications in the biological system. Determining the toxicity of CNT is the most persistent questions in nanotechnology. Inconsistent reports on toxicity of CNTs often appear in the literature and a mechanistic explanation of the reported toxicity remains incomprehensible.Results from various scientific tests on cells have so far proven confusing, with some results indicating it to be highly toxic and others showing no signs of toxicity. Several toxicity mechanisms have been proposed for CNTs including interruption of trans membrane electron transfer, disruption/penetration of the cell envelope, oxidation of cell components, and production of secondary products such as dissolved heavy metal ions or reactive oxygen species (ROS).Toxicity of a CNT sample is dependent on its composition along with its geometry and surface functionalization. Several studies have suggested that well-functionalized CNTs are safe to animal cells, while raw CNTs or CNTs without functionalization show severe toxicity to animal or human cells at even moderate dosage.

Full Text

Reference


Arias, L. R. and Yang, L., Inactivation of bacterial pathogens by carbon nanotubes in suspensions, Langmuir, 25(5), 3003-3012(2009).

doi:10.1021/la802769m

Aschberger, K., Johnston, H. J., Stone, V., Aitken, R. J., Hankin, S. M., Peters, S. A., Tran, C. L. and Christensen, F. M., Review of carbon nanotubes toxicity and exposure appraisal of human health risk assessment based on open literature, Crit. Rev. Toxicol., 40(9), 759-790(2010).

doi:10.3109/10408444.2010.506638

Boor, K. J., Bacterial stress responses: What doesn't kill them can make them stronger, PLoS. Biol., 4(1), e23(2006).

doi:10.1371/journal.pbio.0040023

Bottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Bergamaschi, A. and Mustelin, T., Multi- walled carbon nanotubes induce T lymphocyte apoptosis, Toxicol Lett., 160(2), 121-26(2006).

doi:10.1016/j.toxlet.2005.06.020

Bourdiol, F., Mouchet, F., Perrault, A., Fourquaux, I., Datas, L., Gancet, C., Boutonnet, J. C., Pinelli, E., Gauthier, L. and Flahaut, E., Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae, Carbon, 54, 175-91(2013).

doi:10.1016/j.carbon.2012.11.024

Cai, H., Cao, X., Jiang, Y., He, P. and Fang, Y., Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection, Anal. Bioanal. Chem., 375(2), 287-93(2003).

doi:10.1016/j.envpol.2004.10.001

Calabrese, E. J., Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences, Environ. Pollut., 138(3), 378-11(2005).

doi:10.1016/j.envpol.2004.10.001

Casey, A., Herzog, E., Davoren, M., Lyng, F. M., Byrne, H. J. and Chambers, G., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity, Carbon, 45(7), 1425-1432(2007).

doi:10.1016/j.carbon.2007.03.033

Cheng, J., Flahaut, E. and Cheng, S. H., Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos, Environ. Toxicol. Chem., 26(4), 708-16(2007).

doi:10.1897/06-272R.1

Cherukuri, P., Gannon, C. J., Leeuw, T.  K., Schmidt, H. K., Smalley, R. E., Curley, S. A., and Weisman, R. B., Mammalian pharmacokinetics of carbon nanotubes using intrinsic near infrared fluorescence, Proc. Natl. Acad. Sci., 103(50), 18882-86(2006).

doi:10.1073/pnas.0609265103

Chung, H., Son, Y., Yoon, T. K., Kim, S. and, Kim, W., The effect of multi walled carbon nanotubes on soil microbial activity, Ecotoxicol. Environ. Saf., 74(4), 569-575(2011).

doi:10.1016/j.ecoenv.2011.01.004

Cui, D. X., Tian, F. R., Ozkan, C. S., Wang, M. and Gao, H. J., Effect of single wall carbon nanotubes on human HEK293 cells, Toxicol. Lett., 155(1), 73-85(2005).

doi:10.1016/j.toxlet.2004.08.015

Cui, D. X., Tian, F. R., Ozkan, C. S., Wang, M. and Gao, H. J., Effect of single wall carbon nanotubes on human HEK293 cells, Toxicol. Lett., 155(1), 73-85(2005).

doi:10.1016/j.toxlet.2004.08.015

Davoren, M., Herzog, E., Casey, A., Cottineau, B., Chambers, G., Byrne, H. J. and Lyng, F. M., In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells, Toxicol in Vitro, 21(3), 438-448(2007).

doi:10.1016/j.tiv.2006.10.007

Deng, X. Y., Yang, S. T., Nie, H. Y., Wang, H. F. and Liu, Y. F., A generally adoptable radiotracing method for tracking carbon nanotubes in animals, Nanotechnol., 19(7), 75101(2008).

doi:10.1088/0957-4484/19/7/075101

Ding, L. H., Stilwell, J., Zhang, T. T., Elboudwarej, O., Jiang, H. J., Selegue, J. P., Cooke, P. A., Gray, J. W. and Chen, F. Q. F., Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast, Nano Lett., 5(12), 2448-64(2005).

doi:10.1021/nl051748o

Dong, L., Joseph, K. L., Witkowski, C. M. and Craig, M. M., Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants, Nanotechnol., 19(25), 255702(2008).

doi:10.1088/0957-4484/19/25/255702

Dror, Y., Salalha, W., Khalfin, R. L., Cohen, Y., Yarin, A. L. and Zussman, E., Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning, Langmuir, 19(17), 7012-7020(2003).

doi:10.1021/la034234i

Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J. P., Prato, M., Muller, S. and Bianc, A., Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Lett., 6(7), 1522-28(2006).

doi:10.1021/nl061160x

Dumortier, H., Lacotte, S., Pastorin, G., Marega, R., Wu, W., Bonifazi, D., Briand, J. P., Prato, M., Muller, S. and Bianco, A., Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Lett., 6(7), 1522-1528(2006).

Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J. and Oberdorster, G., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system, Environ. Health Persp., 114(8), 1172-1178(2010).

doi:10.1289/ehp.9030

Elkin, T., Jiang, X., Taylor, S., Lin, Y., Gu, L., Yang, H., Brown, J., Collins, S. and Sun, Y. P., Immuno carbon nanotubes and recognition of pathogens, Chem. Biochem., 6(4), 640-43(2005).

doi:10.1002/cbic.200400337

Endo, M., Strano, M. S. and Ajayan, P. M., Potential applications of carbon nanotubes, Appl. Phy., 111, 13-61(2008).

doi:10.1007/978-3-540-72865-8_2

Formhals, A., Process and apparatus for preparing artificial threads, U.S. Patent 1,975,504., (1934).

Ghafari, P., St-Denis, C. H., Power, M. E., Jin, X., Tsou, V., Mandal, H. S., Bols, N. C. and Shirley, X., Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa, Nat. Nanotechnol., 3(6), 347-51(2008).

doi:10.1038/nnano.2008.109

Gorczyca, A., Kasprowicz, M. J. and Lemek, T., Physiological effect of multi walled carbon nanotubes (MWCNTs) on conidia of the entomopathogenic fungus, Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes), J. Environ. Sci. Health A, 44(14), 1592-1597(2009).

doi:10.1080/10934520903263603

Herzog, E., Casey, A., Lyng, F. M., Chambers, G., Byrne, H. J. and Davoren, M., A new approach to the toxicity testing of carbon-based nanomaterials - The clonogenic assay, Toxicol. Lett., 174(1-3),49-60(2007).

doi:10.1016/j.toxlet.2007.08.009

Huczko, A., Lange, H., Calstrokko, E., Grubek-Jaworska, H. and Droszcz, P., Physiological test of carbon nanotubes: Are they asbestos like?, Fullerene Sci. Technol., 9(2), 251-54(2001).

doi:10.1081/FST-100102973

Jin, L., Son, Y., Yoon, T. K., Kang, Y. J., Kim, W. and Chung, H., High concentrations of single walled carbon nanotubes lower soil enzyme activity and microbial biomass, Ecotoxicol. Environ. Saf., 88, 9-15(2013).

doi:10.1016/j.ecoenv.2012.10.031

Kagan, V. E., Tyurina, Y. Y., Tyurin, V. A., Konduru, N. V., Potapovich, A. I., Osipov, A. N. and Shvedova, A. A., Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron, Toxicol. Lett., 165(1), 88-100(2006).

doi:10.1016/j.toxlet.2006.02.001

Kam, N. W. S., Jessop, T. C., Wender, P. A. and Dai, H. J., Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells, J. Am. Chem. Soc., 126(22), 6850-51(2004).

doi:10.1021/ja0486059

Kam, N. W. S., O'Connell, M., Wisdom, J. A. and Dai, H., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Natl. Acad. Sci., 102(33), 11600-605(2005).

doi:10.1073/pnas.0502680102

Kamavaram, V., Veedu, V. and Kannan, A. M., Synthesis and characterization of platinum nanoparticles on in situ grown carbon nanotubes based carbon paper for proton exchange membrane fuel cell cathode, J. Power Sources, 188(1), 51-56(2009).

doi:10.1016/j.jpowsour.2008.11.084

Kang, S., Herzberg, M., Rodrigues, D. F., and Elimelech, M., Antibacterial effects of carbon nanotubes: Size does matter, Langmuir, 24(13), 6409-6413(2008).

doi:10.1021/la800951v

Kang, S., Mauter, M. S. and Elimelech, M., Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity, Environ. Sci. Technol., 42(19), 7528-7534(2008).

doi:10.1021/es8010173

Kang, S., Mauter, M. S., Elimelech, M., Microbial cytotoxicity of carbon based nanomaterials: Implications for river water and wastewater effluent, Environ. Sci. Technol., 43(7), 2648-2653(2009).

doi:10.1021/es8031506

Kang, S., Pinault, M., Pfefferle, L. D. and Elimelech, M., Single walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir, 23(17), 8670-8673(2007).

doi:10.1021/la701067r

Kenawy, E. R., Bowlin, G. L., Mansfield, K., Layman, J., Simpson, D. G., Sanders, E. H. and Wnek, G. E., Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid) and a blend, J. Control Release., 81(1), 57-64(2002).

doi:10.1016/S0168-3659(02)00041-X

Khalid, P., Hussain, M. A., Rekha, P. D. and Arun, A. B., Carbon nanotube-reinforced hydroxyapatite composite and their interaction with human osteoblast in vitro, Hum. Exp. Toxicol., 33(9), 897-990(2014).

Kim, K. T., Edgington, A. J., Klaine, S. J., Cho, J. W. and Kim, S. D., Influence of multi-walled carbon nanotubes dispersed in natural organic matter on speciation and bioavailability of copper, Environ. Sci. Technol., 43(23), 8979-8984(2009).

Kim, Y. J., Kim, Y. A., Chino, T., Suezaki, H., Endo, M. and Dresselhaus, M. S., Chemically modified multi walled carbon nanotubes as an additive for Supercapacitors, Small., 2(3), 339-45(2006).

doi:10.1002/smll.200500327

Ko, F., Gogotsi, Y., Ali, A., Naguib N., Ye, H., Yang, G. L., Cristopher, Li. and Willis, P., Electrospinning of continuous carbon nanotube filled nanofiber yarns, Adv. Mater., 15(14), 1161-65(2003).

doi:10.1002/adma.200304955

Kundu, S., Nagaiah, T. C., Xia, W., Wang, Y., Dommele, S. V., Bitter, J. H., Santa, M., Grundmeier, G., Bron, M., Schuhmann, W. and Muhler, M., Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction, J. Phys. Chem. C., 113(32), 14302-14310(2009).

doi:10.1021/jp811320d

Kwok, K. W., Leung, K. M., Flahaut, E., Cheng, J. and Cheng, S. H., Chronic toxicity of double walled carbon nanotubes to three marine organisms: Influence of different dispersion methods, Nanomed., 5(6), 951-961(2010).

doi:10.2217/nnm.10.59

Lacerda, L., Soundararajan, A., Singh, R., Pastorin, G., Al-Jamal, K. T., Turton, J., Frederik, P., Herrero, M. A., Bao, S. L. A., Emfietzoglou, D. and Kostarelos, K., Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion, Adv. Mater., 20(2), 225-30(2008).

doi:10.1002/adma.200890002

Lam, C. W., James, J. T., McCluskey, R. and Hunter, R. L., Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol. Lett., 77(1), 126-34(2004).

doi:10.1093/toxsci/kfg243

Lam, C. W., James, J. T., McCluskey, R., and Hunter, R. L., Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol. Lett., 77(1), 126-134(2004).

doi:10.1093/toxsci/kfg243

Landi, B. J., Castro, S. L., Ruf, H. J., Evans, C. M., Bailey, S. G. and Raffaelle, R. P., CdSe quantum dot single wall carbon nanotube complexes for polymeric solar cells, Sol. Energ. Mater. Sol. C., 87(1), 733-46(2005).

doi:10.1016/j.solmat.2004.07.047

Laxminarayana, K. and Jalili, N., Functional nanotube-based textiles: Pathway to next generation fabrics with enhanced sensing capabilities, Text Res. J., 75(9), 670-80(2005).

doi:10.1177/0040517505059330

Leeuw, T. K., Reith, R. M., Simonette, R. A., Harden, M. E., Cherukuri, P., Tsyboulski, D. A., Beckmingham, K. M. and Weisman, R. B., Single-walled carbon nanotubes in the intact organism: Near-IR imaging and biocompatibility studies in Drosophila, Nano Lett., 7(9), 2650-54(2007).

doi:10.1021/nl0710452

Leroux, F., Metenier, K., Gautier, S., Frackowiak, E., Bonnamy, S. and Beguin, F., Electrochemical insertion of lithium in catalytic multi walled carbon nanotubes, J. Power Sources, 81, 317-22(1999).

doi:10.1016/S0378-7753(99)00130-5

Li, M. and Huang, C. P., The responses of Ceriodaphnia dubia toward multi- walled carbon nanotubes:

Li, W., Liang, C., Qiu, J., Zhou, W., Han, H., Wei, Z., Sun, G. and Xin, Q., Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell, Carbon, 40(5), 791-94(2002).

doi:10.1016/S0008-6223(02)00039-8

Lim, J. H., Kim, S. H., Lee, I. C., Moon, C., Kim, S. H., Shin, D. H., Kim, H. C. and Kim, J. C., Evaluation of maternal toxicity in rats exposed to multi-wall carbon nanotubes during pregnancy, Environ. Health Toxicol., 26, e2011006(2011).

doi:10.5620/eht.2011.26.e2011006

Lim, J. Y., Lee, C. K., Kim, S. J., Kim, I. Y. and Kim, S. I., Controlled Nanofiber Composed of Multinwall carbon nanotube/poly (ethylene oxide), J. Macromol. Sci. A., 43(4-5), 785-96(2006).

doi:10.1080/10601320600598936

Liu, S., Wei, L., Hao, L., Fang, N., Chang, M. W., Xu, R., Yang, Y. and Chen, Y., Sharper and faster nano darts kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube, ACS Nano, 3(12), 3891-3902(2009).

doi:10.1021/nn901252r

Liu, Z., Cai, W. B., He, L. N., Nakayama, N., Chen, K., Sun, X. M., Chen, X. Y. and Dai, H. J., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nat. Nanotech. 2(1), 47–52(2007).

doi:10.1038/nnano.2006.170

Liu, Z., Davis, C., Cai, W., He, L., Chen, X. and Dai, H., Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy, Proc. Natl. Acad. Sci., 105(5), 1410-1415(2008).

doi:10.1073/pnas.0707654105

Long, Z., Ji, J., Yang, K., Lin, D. and Wu, F., Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae, Environ. Sci. Technol., 46(15), 8458-8466(2012).

doi:10.1021/es301802g

Manna, S. K., Sarkar, S., Barr, J., Wise, K., Barrera, E. V., Jejelowo, O. and Ramesh, G. T., Single walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes, Nano Lett., 5(9), 1676-684(2005).

doi:10.1021/nl0507966

McDevitt, M. R., Chattopadhyay, D., Kappel, B. J., Jaggi, J. S., Schiffman, S. R., Antczak, C., Njardarson, J. T., Brentjens, R. and Scheinberg, D. A., Tumor targeting with antibody functionalized, radiolabeled carbon nanotubes, J. Nucl. Med., 48, 1180-1189(2007).

doi:10.2967/jnumed.106.039131

Mercer, R. R., Scabilloni, J., Wang, L., Kisin, E., Murray, A. R., Schwegler-Berry, D., Shvedova, A. A. and Castranova, V., Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model, Am. J. Physiol. Lung Cell Mol. Physiol., 294(1), L87-97(2008).

doi:10.1152/ajplung.00186.2007

Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J. F., Delos, M., Arras, M., Fonseca, A., Nagy, J. B. and Lison, D., Respiratory toxicity of multi-wall carbon nanotubes, Toxicol. Appl. Pharmacol., 207(3), 221-31(2005).

doi:10.1016/j.taap.2005.01.008

Patolsky, F., Zheng, G., Hayden, O., Lakadamyali, M., Zhuang, X. and Lieber, C. M., Electrical detection of single viruses, Proc. Natl. Acad. Sci., 101, 14017-22(2004).

doi:10.1073/pnas.0406159101

Petersen, E. J., Pinto, R. A., Mai, D. J., Landrum, P. F. and Weber, W. J. Jr., Influence of polyethyleneimine graftings of multi walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna, Environ. Sci. Technol., 45(3), 1133-138(2011).

doi:10.1021/es1030239

Plata, D. L., Gschwend, P. M. and Reddy, C. M., Industrially synthesized single walled carbon nanotubes: Compositional data for users, environmental risk assessments and source apportionment, Nanotechnol., 19(18), 185706(2008).

doi:10.1088/0957-4484/19/18/185706

Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos like pathogenicity in a pilot study, Nat. Nanotechnol., 3(7), 423-28(2008).

doi:10.1038/nnano.2008.111

Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos like pathogenicity in a pilot study, Nat. Nanotech., 3(7), 423-28(2008).

doi:10.1038/nnano.2008.111

Prato, M., Kostarelos, K. and Bianco, A., Functionalized carbon nanotubes in drug design and discovery, Acc. Chem. Res., 41(1), 60-68(2008).

doi:10.1021/ar700089b

Pulskamp, K., Diabaté, S. and Krug, H. F., Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicol. Lett., 168(1), 58-74(2007).

doi:10.1016/j.toxlet.2006.11.001

Rajendran, V., Selvamurthy, W. and Saminathan, K., Compendium on Indian capability on nano science and technology, Macmillan Publishers, India, ISBN 978-93-5059-030-0, (2012).

Reneker, D. H. and Chun, I., Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnol., 7(3), 216(1996).

doi:10.1088/0957-4484/7/3/009

Riding, M. J., Martin, F. L., Trevisan, J., Llabjani, V., Patel, I. I., Jones, K. C. and Semple, K. T., Concentration dependent effects of carbon nanoparticles in gram negative bacteria determined by infrared spectroscopy with multivariate analysis, Environ. Pollut., 163, 226-234(2012).

doi:10.1016/j.envpol.2011.12.027

Rodrigues, D. F. and Elimelech, M., Toxic effects of single walled carbon nanotubes in the development of E. coli biofilm, Environ. Sci. Technol., 44(12), 4583-4589(2010).

doi:10.1021/es1005785

Ryman-Rasmussen, J. P., Cesta, M. F., Brody, A. R., Shipley-Phillips, J. K., Everitt, J. I., Tewksbury, E. W., Moss, O. R., Wong, B. A., Dodd, D. E., Andersen, M. E. and Bonner, J. C., Inhaled carbon nanotubes reach the subpleural tissue in mice, Nat. Nanotechnol., 4(11), 695-80(2009).

doi:10.1038/nnano.2009.305

Sayes, C. M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, J. M. and Colvin, V. L., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett., 161(2), 135-42(2006).

doi:10.1016/j.toxlet.2005.08.011

Schipper, M. L., Nakayama-Ratchford, N., Davis, C. R., Kam, N. W. S., Chu, P., Liu, Z., Sun, X., Dai, H. and Gambhir, S. S., A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice, Nat. Nanotechnol., 3(4), 216-21(2008).

doi:10.1038/nnano.2008.68

Schwab, F., Bucheli, T. D., Lukhele, L. P., Magrez, A., Nowack, B., Sigg, L. and Knauer, K., Are carbon nanotube effects on green algae caused by shading and agglomeration?, Environ. Sci. Technol., 45(14), 6136-6144(2011).

doi:10.1021/es200506b

Sharma, C. S., Sarkar, S., Periyakaruppan, A., Barr, J., Wise, K., Thomas, R., Wilson, B. L. and Ramesh, G. T., Single walled carbon nanotubes induces oxidative stress in rat lung epithelial cells, J. Nanosci. Nanotechnol., 7(7), 2466-2472(2007).

doi:10.1166/jnn.2007.431

Shvedova, A. A., Kisin, E. R., Mercer, R., Murray, A. R., Johnson, V. J., Potapovich, A. I., Tyurina, Y. Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D. and Baron, P., Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice, Am. J. Phys. Lung Cell Mol. Physiol., 289(5), L698– L708(2005).

doi:10.1152/ajplung.00084.2005

Simon-Deckers, A., Loo, S., Mayne-L'hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., Gouget, B. and Carriere, M., Size composition and shape dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria, Environ. Sci. Technol., 43(21), 8423-8429(2009).

doi:10.1021/es9016975

Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A. and Kostarelos, K., Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers, Proc. Natl. Acad. Sci., 103(9), 3357-3362(2006).

doi:10.1073/pnas.0509009103

Thakare, V. S., Das, M., Jain, A. K., Patil, S. and Jain, S., Carbon nanotubes in cancer theragnosis, Nanomed., 5(8), 1277-301(2010).

doi:10.2217/nnm.10.95

Tu, X., Manohar, S., Jagota, A. and Zheng, M., DNA sequence motifs for structure specific recognition and separation of carbon nanotubes, Nat., 460(7252), 250-53(2009).

doi:10.1038/nature08116

Vecitis, C. D., Zodrow, K. R., Kang, S. and Elimelech, M., Electronic structure dependent bacterial cytotoxicity of single walled carbon nanotubes, ACS Nano., 4(9), 5471-5479(2010).

doi:10.1021/nn101558x

Wang, C., Waje, M., Wang, X., Tang, J. M., Haddon, R. C. and Yan, Y., Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Lett., 4(2), 345-48(2004).

doi:10.1021/nl034952p

Wang, H., Gu, L., Lin, Y., Lu, F., Meziani, M. J., Luo, P. G., Wang, W., Cao, L. and Sun, Y. P., Unique aggregation of anthrax (Bacillus anthracis) spores by sugar coated single walled carbon nanotubes, J. Am. Chem. Soc., 128(41), 13364-13365(2008).

doi:10.1021/ja065455o

Wang, L., Mercer, R. R., Rojanasakul, Y., Qiu, A., Lu, Y., Scabilloni, J. F., Wu, N. and Castranova, V., Direct fibrogenic effects of dispersed single walled carbon nanotubes on human lung fibroblasts, J. Toxicol. Environ. Health A., 73(5-6), 410–422(2010).

doi:10.1080/15287390903486550

Wang, X., Waje, M. and Yan, Y., CNT based electrodes with high efficiency for PEMFCs, Electrochem Solid State Lett., 8(1), A42-A44(2005).

doi:10.1149/1.1830397

Warheit, D. B., Laurence, B. R.,  Reed, K. L., Roach, D. H., Reynolds, G. A. M. and Webb, T. R., Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats, Toxicol Lett., 77(1), 117-125(2004).

doi:10.1093/toxsci/kfg228

Wei, L. P., Thakkar, M., Chen, Y. H, Ntim, S. A., Mitra, S. and Zhang, X. Y., Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta, Aquat. Toxicol., 100(2), 194-201(2010).

doi:10.1016/j.aquatox.2010.07.001

Wu, P., Chen, X., Hu, N., Tam, U. C., Blixt, O., Zettl, A. and Bertozzi, C. R., Biocompatible carbon nanotubes generated by functionalization with glycodendrimers, Angew. Chem., 120(27), 5100-103(2008).

doi:10.1002/ange.200705363

Xie, X. L., Mai, Y. W. and Zhou, X. P., Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Mat. Sci. Eng. R., 49(4), 89-112(2005).

doi:10.1016/j.mser.2005.04.002

Yang, C., Mamouni, J., Tang, Y. and Yang, L., Antimicrobial activity of sigle walled carbon nanotubes lenght effect, Langmuir, 26(20), 16013-16019(2010).

doi:10.1021/la103110g

Yang, S. T., Fernando, K. A., Liu, J. H., Wang, J., Sun, H. F., Liu, Y., Chen, M., Huang, Y., Wang, X. and Wang, H., Covalently PEGylated carbon nanotubes with stealth character in vivo, Small., 4(7), 940-44(2008).

doi:10.1002/smll.200700714

Yang, S. T., Guo, W., Lin, Y., Deng, X. Y., Wang, H. F., Sun, H. F., Liu, Y. F., Wang, X., Wang, W., Chen, M. and Sun, Y. P., Biodistribution of pristine single-walled carbon nanotubes in vivo, J. Phys. Chem. C., 111(48), 17761-64(2007).

doi:10.1021/jp070712c

Yang, S. T., Wang, X., Jia, G., Gu, Y., Wang, T., Nie, H., Ge, C., Wang, H. and Liu, Y., Long term accumulation and low toxicity of single walled carbon nanotubes in intravenously exposed mice, Toxicol. Lett., 181(3), 182-89(2008).

doi:10.1016/j.toxlet.2008.07.020

Youn, S., Wang, R., Gao, J., Hovespyan, A., Ziegler, K. J., Bonzongo, J. C. and Bitton, G., Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata, Nanotoxicol., 6(2), 161-72(2011).

doi:10.3109/17435390.2011.562329

Yu, L. E, Lanry, Y. L. Y., Ong, C. N., Tan, Y. L., Balasubramaniam, K. S., Hartono, D., Shui. G., Wenk, M., R. and Ong, W. Y., Translocation and effects of gold nanoparticles after inhalation exposure in rats, Nanotoxicology, 1(3), 235-242(2007)

doi:10.1080/17435390701763108

Zensi, A., Begley, D., Pontikis, C., Legros, C., Mihoreanu, L., Wagner, S., Buchel, C., von, B. H. and Kreuter, J., Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons, J. Control Release., 137(1), 78-86(2009).

doi:10.1016/j.jconrel.2009.03.002

Zheng, H., Liu, L., Lu, Y., Long, Y., Wang, L. and Ho, K. P., Rapid determination of nanotoxicity using luminous bacteria, Anal. Sci., 26(1), 125-128(2010).

doi:10.2116/analsci.26.125

Zhu, X., Zhu, L., Chen, Y. and Tian, S., Acute toxicities of six manufactured nanomaterial suspensions to Daphnia manga, J. Nanopart. Res., 11(1), 67-75(2009).

doi:10.1007/s11051-008-9426-8

Zhu, Y., Zhao, Q., Li, Y., Cai, X. and Li,W., The interaction and toxicity of multi walled carbon nanotubes with Stylonychia mytilus, J. Nanosci. Nanotechnol., 6(5), 1357-64(2006).

doi:10.1166/jnn.2006.194

Contact Us

  • No. 53, II Street,
    Rock Mount City, Erode,
    TN, India - 638112
  • editorjent@gmail.com
  • +91 94422 64501

Powered by

Powered by OJS