Welcome to JENT its Monday 22nd of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Low Temperature Synthesis and Characterization of rGO-CoO Nanocomposite with Efficient Electrochemical Properties


Graphene has been offered as a promising two dimensional nanomaterial with outstanding electric, thermal and mechanical properties for many applications. Here we narratea facile approach to prepare a reduced graphene oxide-cobalt oxidenanocomposite (rGO-CoO) via a general co-precipitation method at 80 °C and within 6 hours reaction period and the final product was annealed at 500 °C. Transmission electron microscope images show that the cobalt oxide nanoparticles (10-20 nm) are encapsulated by a reduced graphene oxide shell. The oxidation states of the nanocomposite were confirmed by XPS studies. The electrochemical properties of the nanocomposite were investigated by using cyclic voltammetry (CV). A maximum specific capacitance of 175 F/g was obtained at a scan rate of 10 mV/s.

Article Type: Research Article

Corresponding Author: A. Jafar Ahamed 1  

Email: agjafar@yahoo.co.in

This article has not yet been cited.

A. Jafar Ahamed 1*,  P. Vijaya Kumar 2,  G. Srikesh 3.  

1, 2. Department of Chemistry, Jamal Mohamed College (Autonomous),Tiruchirappalli, TN, India.

3. Department of Chemistry, Karunya University, Coimbatore, TN, India

J. Environ. Nanotechnol. Volume 4, No.2 pp.01-08
ISSN: 2279-0748 eISSN: 2319-5541
ENT 152147.pdf
Download Citation


Ashok Kumar, N., Choi, H., Ran Shin, Y., Chang, D., Dai, L. and Baek, J., Polyaniline-Grafted reduced graphene oxide for efficient electrochemical super capacitors. ACS. Nano. 6(2), 1715-1723(2012).

Bao, C., Song, L., Charles, W., Yuan, B.,Guo, Y., Hu, Y. and Gong, X., Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene, J. Matter. Chem., 22(17), 16399-16406(2012).

Chen, S., Zhu, J., Han, Q.,Zheng, Z., yang, Y. and Wang, X., Shape-Controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties, Crystal Growth & Design., 9(5), 4356-4361(2009).

Dong, X, Xu, H., Wang, X., Huang, Y., Chan-Park, B., Zhang, H., Wang, L., Huang, W. and Chen, P., 3D Graphene-Cobalt oxide electrode for high performance super capacitor and enzymeless glucose detection, ACS Nano., 6(4), 3206-3213(2012).

Elzatahry, A., Abdullah, A., Salah El-Din, T., Al-Enizi, A.,Maarouf, A.,Galal, A., Hassan, H., El-Ads, E Al-Theyab, S. and Al-Ghamdi, A., Nanocomposite graphene-based materials for fuel cell applications, Int. J. Electrochem. Sci., 7(13), 3115-3126(2012).

Fan, S., Zhang, Y., Ma, X., Yan, E., Liu, X., Li, S., Liang, W. and Zhai, X., Deposition of Nanocrystal Co3O4 on grapheme nano sheets as anode material for lithium ion batteries, Int. J. Electrochem. Sci., 8(5), 10498-10505(2013).

Gao, L.,Yue, W., Tao, S. and Fan, L., Novel strategy for preparation of graphene-Pd, Pt Composite, and its enhanced electrocatalytic activity for alcohol oxidation, Langmuir, 29(8), 957-964(2013).

Gao, W., Majumder, M., Alemany, B., Narayanan, N., Ibarra, A., Pradhan, K. and Ajayan, M., Engineered graphite oxide materials for application in water purification. ACS Appl. Mater. Interfaces., 3, 1821-1826(2011). 

Hu, H., Zhao, Z., Zhou, Q., Gogotsi, Y. and Qiu, The role of microwave absorption on formation of graphene from graphite oxide, J. Carbon., 50(9), 3267-3273(2012).

Hummers, W. S., Offerman, R. E., Preparation of graphite oxide., J. Am. Chem. Soc. 80(5), 1339-1339(1958).

Jiang, Y., Zhang, Q., Li, F., Niu, L., Glucose oxidase and graphene bio-nanocomposite bridged by ionic liquid unit for glucose bio-sensing application, Sensors and Actuators, 161(1), 728-733(2012).

Lee, S., Mattevi, C., Chhowalla, M. and Sankaran, R., Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications, J. Phys. Chem. Lett., 3(6), 772-777(2012).

Li, D., Shi, D., Chen, Z., Liu, H. and Jia, D., Enhanced rate performance of cobalt oxide/ nitrogen doped graphene composite for lithium ion batteries, RSC Advances, 3(15), 5003-5008(2013).

Lian, P., Zhu, X., Liang, S., Li, Z., Yang, W. and Wang, H., Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Electro. Chemica. Acta., 55(8), 3909-3914(2010).

Park, S., Park, S. and Kim, S., Preparation and capacitance behaviors of cobalt oxide/graphene composites, Carbon Lett., 13(2), 130-132(2012).

Wang, L., Li, J., Mao, C., Zhang, L., Zhao, L., Jiang, Q., Facile preparation of a cobalt hybrid/grapheme nano composite by in situ chemical reduction: high lithium storage capacity and highly efficient removal of congo red, Dalton Trans., 42(4), 8070-8077(2013).

Wood, C., Ogitsu, T., Otani, M. and Biener, J., First principle inspired design strategies for graphene based super capacitor electrodes, J. Phys. Chem. C., 118(1), 4-15(2014).

Wu, Z., Zhou, G., Yin, L., Ren, W., Li, F. and Cheng, H., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy., 1(1), 107-131(2012).

Xu, G., Wang, N., Wei, J., Lv, L., Zhang, J., Chen, Z. and Xu, Q., Preparation of Graphene oxide/polyaniline nanocomposite with assistance of super critical carbon dioxide for super capacitor electrodes, Ind. Eng. Chem. Res., 51(4), 14390-14398(2012).

Yan, J., Wei, T.,Qiao, W., Shao, B., Zhao, Q., Zhang, L. and Fan, Z., Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for super capacitors, Electro. Chemica. Acta., 55(7), 6973-6978(2010).

Yao, Y., Xu, C., Qin, J., Wei, F., Rao, M. and Wang, S., Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries, Ind. Eng. Chem. Res., 52(13), 17341-17350(2013).

Zhang, L., Huang, Y., Zhang, Y., Ma, Y. and Chen, Y., Sol-Gel Autocombustion Synthesis of Graphene/Cobalt magnetic nanocomposites, J. Nanosci. Nanotechnol, 13(2), 1129-1131(2013).

Zheng, Y., Li, P., Li, H., Chen, S., Controllable growth of cobalt oxide nanoparticles on reduced graphene oxide and its applications for highly sensitive glucose sensor. Int., J. Electrochem. Sci., 9(7), 7369-7381(2014).

Zhu, J., Sharma, Y., Zeng, Z., Zhang, X.,Madhavi, S.,Mhaisalkar, S., Zhang, H.,Hng, H. and Yan, Q., Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-Ion battery electrodes, J. Phys. Chem. C., 115(5), 8400-8406(2011).