Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Investigation of Azimuthally Polarized Bessel-modulated Gaussian Beam with Annular Obstruction


Investigation of annular obstructed azimuthally polarized Bessel-modulated Gaussian beam (QBG) in the focal region of high NA lens, based on vectorial diffraction theory. The numerical results show that the intensity distribution in focal region of the incident beam can be altered considerably by changing beam parameter (μ) and introducing annular apodization (δ). Beam parameter induces the focal splitting in transverse direction, while annular apodization leads to change in focal pattern along optical axis of the focusing system. More interesting, the focal splitting may be in continuous in certain case of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.

Article Type: Research Article

Corresponding Author: K. Gokulakrishnan 1  

Email: gk39762@gmail.com

This article has not yet been cited.

K. Gokulakrishnan 1*,  T. V. Sivasubramonia Pillai 2.  

1. Department of ECE, Regional Center, Anna University: Tirunelveli Region, Tirunelveli, TN, India.

2. Department of Physics, University College of Engineering, Nagercoil, TN, India

J. Environ. Nanotechnol. Volume 4, No.1 pp.32-36
ISSN: 2279-0748 eISSN: 2319-5541
ENT 144119.pdf
Download Citation


Zhan, Q., Cylindrical vector beams: From mathematical concepts to applications, Advances in Optics and Photonics, 1(1), 1–57 (2009).
Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express, 7(2), 77–87 (2000).
Gao, X., Wang, J., Gu, H. and Xu, W., Focusing properties of concentric piecewise cylindrical vector beam, Optik, 118(6), 257–265 (2007).
Zhou, G., Ni, Y. and Zhang, Z., Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field, Optics Communications, 272(1), 32–39 (2007).
Quabis, S., Dorn, R., Eberler, M., Glӧckl, O. and Leuchs, G., The focus of light – theoretical calculation and experimental tomographic reconstruction, Appl. Phys., 72(1), 109-113 (2001).
Helseth, L. E., Optical vortices in focal regions, Opt. Commun, 229(6), 85-91 (2004).
Grosjean, T. and Courjon, D., Smallest focal spots, Opt. Commun., 272(2), 314-319 (2007).
Ganic, D., Gan, X. and Gu, M., Focusing of doughnut laser beams by a high numerical-aperture objective in free space, Opt Express, 11(21), 2747-2752 (2003).
Zhan, Q. and Leger, J. R., Focus shaping using cylindrical vector beams, Opt. Express, 10(7), 324-331 (2002).
Helseth, L. E., Smallest focal hole, Opt. Commun., 257(1), 1-8 (2006).
Zhan, Q., Properties of circularly polarized vortex beams, Opt. Lett., 31(7), 867-869 (2006).
Bokor, N. and Davidson, N., A three dimensional dark focal spot uniformly surrounded by light, Opt. Commun., 279(2), 279-229 (2007).
Jia, B., Gan, X. and Gu, M., Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD, Opt. Express, 13(18), 6821–6827 (2005).
Ashkin, J. M., Dziedzic, T. and Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330(6150), 769-771 (2003).
Grier, D. G., A revolution in optical manipulation, Nature, 424(6950), 810–816 (2003).
MacDonald, M. P., Spalding, G. C. and Dholakia, K., Microfluidic sorting in an optical lattice, Nature, 426(6965), 421–424 (2003).
Garces-Chaves, V., McGloin, D., Melville, H., Sibbett, W. and Dholakia, K., Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature, 419(6903), 145–147 (2002).
Paterson, L., MacDonald, M. P., Arlt, J., Sibbett, W., Bryant, P. E., and Dholakia, K., Controlledrotation of optical trapped microscopic particles, Science, 292(5518), 912–914 (2001).
Gao, X., Zhou, F., Xu, W. and Gan, F., Focus splitting induced by a pure phase-shifting apodizer, Optics Communications, 239(3), 55–59 (2004).
Caron, C. F. R., Potvliege, R. M., Bessel-modulated Gaussian beams with quadratic radial dependence, Optics Communications., 164(3), 83-93 (1999).
Hricha, Z., Belafhal, A., Focal shift in the axisymmetric Bessel-modulated Gaussian beam, Optics Communications, 255(4), 235–240 (2005).
Wang, X., LÜ, B., The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams, Optical and Quantum Electronics, 34(10), 1071–1077 (2002).
Belafhal, A., Dalil, L. E., Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system, Optics Communications, 177(6), 181–188 (2000).
Lü, B., Wang, X., Kurtosis parameter of Bessel-modulated Gaussian beams propagating through ABCD optical systems, Optics Communications, 204(6), 91–97 (2002).
Mei, Z., Zhao, D., Wei, X., Jing, F. and Zhu, Q., Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture, Optik, 116(11), 521–526 (2005).
Wang, X. and Lü, B., The beam width of Bessel-modulated Gaussian beams, J. Mod. Opt., 50(14), 2107–2115 (2003).
Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C. and Chong, C. T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics, 2(8), 501 (2008).
Dorn, R., Quabis, S. and Leuchs, G., Sharper focus for a radially polarized light beam, Phys. Rev. Lett., 91(5), 233901-233904 (2003).
Yew, E. Y. S. and Sheppard, C. J. R., Polarization conversion in confocal microscopy with radially polarized illumination, Opt. Lett., 34(14), 2147–2149 (2009).
Gu, M., Advanced Optical Imaging Theory, Springer, Heidelberg, (2000).
Suresh, P., Mariyal, C., Rajesh, K. B., Pillai, T. V. S., Polarization effect of cylindrical vector beam in high numerical aperture lens axicon systems, Optik, 124(13), 1632–1636 (2013).
Suresh, P., Mariyal, V, Saraswathi, Rajesh, K. B., Pillai, T. V. S. and Jaroszewicz, Z., Tightly focusing of spirally polarized Quadratic Bessel Gaussian beam through a dielectric interface, Optik, 125(3), 1264-1266 (2014).
doi:10.1016/j.ijleo.2013.08.039 36