Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541
CODEN:JENOE2

Investigation of Azimuthally Polarized Bessel-modulated Gaussian Beam with Annular Obstruction

Abstract

Investigation of annular obstructed azimuthally polarized Bessel-modulated Gaussian beam (QBG) in the focal region of high NA lens, based on vectorial diffraction theory. The numerical results show that the intensity distribution in focal region of the incident beam can be altered considerably by changing beam parameter (μ) and introducing annular apodization (δ). Beam parameter induces the focal splitting in transverse direction, while annular apodization leads to change in focal pattern along optical axis of the focusing system. More interesting, the focal splitting may be in continuous in certain case of incident beam propagating through aligned optical system which is suitable for application such as optical manipulation and optical trapping.

Article Type: Research Article

Corresponding Author: K. Gokulakrishnan 1  

Email: gk39762@gmail.com

This article has not yet been cited.

K. Gokulakrishnan 1*,  T. V. Sivasubramonia Pillai 2.  

1. Department of ECE, Regional Center, Anna University: Tirunelveli Region, Tirunelveli, TN, India.

2. Department of Physics, University College of Engineering, Nagercoil, TN, India

J. Environ. Nanotechnol. Volume 4, No.1 pp.32-36
ISSN: 2279-0748 eISSN: 2319-5541
ENT 144119.pdf
Download Citation

Reference

Zhan, Q., Cylindrical vector beams: From mathematical concepts to applications, Advances in Optics and Photonics, 1(1), 1–57 (2009).
doi:10.1364/AOP.1.000001
Youngworth, K. S. and Brown, T. G., Focusing of high numerical aperture cylindrical-vector beams, Optics Express, 7(2), 77–87 (2000).
doi:10.1364/OE.7.000077
Gao, X., Wang, J., Gu, H. and Xu, W., Focusing properties of concentric piecewise cylindrical vector beam, Optik, 118(6), 257–265 (2007).
doi:10.1016/j.ijleo.2006.10.006
Zhou, G., Ni, Y. and Zhang, Z., Analytical vectorial structure of non-paraxial nonsymmetrical vector Gaussian beam in the far field, Optics Communications, 272(1), 32–39 (2007).
doi:10.1016/j.optcom.2006.11.044
Quabis, S., Dorn, R., Eberler, M., Glӧckl, O. and Leuchs, G., The focus of light – theoretical calculation and experimental tomographic reconstruction, Appl. Phys., 72(1), 109-113 (2001).
doi:10.1007/s003400000451
Helseth, L. E., Optical vortices in focal regions, Opt. Commun, 229(6), 85-91 (2004).
doi:10.1016/j.optcom.2003.10.043
Grosjean, T. and Courjon, D., Smallest focal spots, Opt. Commun., 272(2), 314-319 (2007).
doi:10.1016/j.optcom.2006.11.043
Ganic, D., Gan, X. and Gu, M., Focusing of doughnut laser beams by a high numerical-aperture objective in free space, Opt Express, 11(21), 2747-2752 (2003).
doi:10.1364/OE.11.002747
Zhan, Q. and Leger, J. R., Focus shaping using cylindrical vector beams, Opt. Express, 10(7), 324-331 (2002).
doi:10.1364/OE.10.000324
Helseth, L. E., Smallest focal hole, Opt. Commun., 257(1), 1-8 (2006).
doi:10.1016/j.optcom.2005.07.019
Zhan, Q., Properties of circularly polarized vortex beams, Opt. Lett., 31(7), 867-869 (2006).
doi:10.1364/OL.31.000867
Bokor, N. and Davidson, N., A three dimensional dark focal spot uniformly surrounded by light, Opt. Commun., 279(2), 279-229 (2007).
doi:10.1016/j.optcom.2007.07.014
Jia, B., Gan, X. and Gu, M., Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD, Opt. Express, 13(18), 6821–6827 (2005).
doi:10.1364/OPEX.13.006821
Ashkin, J. M., Dziedzic, T. and Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330(6150), 769-771 (2003).
doi:10.1038/330769a0
Grier, D. G., A revolution in optical manipulation, Nature, 424(6950), 810–816 (2003).
doi:10.1038/nature01935
MacDonald, M. P., Spalding, G. C. and Dholakia, K., Microfluidic sorting in an optical lattice, Nature, 426(6965), 421–424 (2003).
doi:10.1038/nature02144
Garces-Chaves, V., McGloin, D., Melville, H., Sibbett, W. and Dholakia, K., Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature, 419(6903), 145–147 (2002).
doi:10.1038/nature01007
Paterson, L., MacDonald, M. P., Arlt, J., Sibbett, W., Bryant, P. E., and Dholakia, K., Controlledrotation of optical trapped microscopic particles, Science, 292(5518), 912–914 (2001).
doi:10.1126/science.1058591
Gao, X., Zhou, F., Xu, W. and Gan, F., Focus splitting induced by a pure phase-shifting apodizer, Optics Communications, 239(3), 55–59 (2004).
doi:10.1016/j.optcom.2004.05.029
Caron, C. F. R., Potvliege, R. M., Bessel-modulated Gaussian beams with quadratic radial dependence, Optics Communications., 164(3), 83-93 (1999).
doi:10.1016/S0030-4018(99)00174-1
Hricha, Z., Belafhal, A., Focal shift in the axisymmetric Bessel-modulated Gaussian beam, Optics Communications, 255(4), 235–240 (2005).
doi:10.1016/j.optcom.2005.06.025
Wang, X., LÜ, B., The beam propagation factor and far-field distribution of Bessel-modulated Gaussian beams, Optical and Quantum Electronics, 34(10), 1071–1077 (2002).
doi:10.1023/A:1020403507805
Belafhal, A., Dalil, L. E., Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system, Optics Communications, 177(6), 181–188 (2000).
doi:10.1016/S0030-4018(00)00600-3
Lü, B., Wang, X., Kurtosis parameter of Bessel-modulated Gaussian beams propagating through ABCD optical systems, Optics Communications, 204(6), 91–97 (2002).
doi:10.1016/S0030-4018(02)01214-2
Mei, Z., Zhao, D., Wei, X., Jing, F. and Zhu, Q., Propagation of Bessel-modulated Gaussian beams through a paraxial ABCD optical system with an annular aperture, Optik, 116(11), 521–526 (2005).
doi:10.1016/j.ijleo.2005.05.003
Wang, X. and Lü, B., The beam width of Bessel-modulated Gaussian beams, J. Mod. Opt., 50(14), 2107–2115 (2003).
doi:10.1080/09500340308234562
Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C. and Chong, C. T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics, 2(8), 501 (2008).
doi:10.1038/nphoton.2008.127
Dorn, R., Quabis, S. and Leuchs, G., Sharper focus for a radially polarized light beam, Phys. Rev. Lett., 91(5), 233901-233904 (2003).
doi:10.1103/PhysRevLett.91.233901
Yew, E. Y. S. and Sheppard, C. J. R., Polarization conversion in confocal microscopy with radially polarized illumination, Opt. Lett., 34(14), 2147–2149 (2009).
doi:10.1364/OL.34.002147
Gu, M., Advanced Optical Imaging Theory, Springer, Heidelberg, (2000).
doi:10.1007/978-3-540-48471-4
Suresh, P., Mariyal, C., Rajesh, K. B., Pillai, T. V. S., Polarization effect of cylindrical vector beam in high numerical aperture lens axicon systems, Optik, 124(13), 1632–1636 (2013).
doi:10.1016/j.ijleo.2012.05.049
Suresh, P., Mariyal, V, Saraswathi, Rajesh, K. B., Pillai, T. V. S. and Jaroszewicz, Z., Tightly focusing of spirally polarized Quadratic Bessel Gaussian beam through a dielectric interface, Optik, 125(3), 1264-1266 (2014).
doi:10.1016/j.ijleo.2013.08.039 36

>>