Welcome to JENT its Thursday 18th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541
CODEN:JENOE2

Alfven Wave Instabilities Related with Excess Charge as a Source of Jovian Magnetospheric Micropulsations

Abstract

Hydromagnetic wave instabilities (Alfven wave instabilities, the physical picture of this instability is given in terms of wave-wave interaction) excited by an electron or ion beam passing through IO tours in the Jovian magnetosphere has been studied in the case of low wave frequency and small wave number in the presence of excess charge in the media. It has been obtained that the excess charge near IO has the dominant role in modifying the Alfvan wave instabilities in comparison to the other parameters. The central frequency of this instability is lying within the range of micropulsations for the presence of excess charge of 10-3 times the ambient plasma in the Jovian magnetosphere. Hence this excited Alfvan wave instabilities is the one of the possible generation mechanism for the micro-pulsations recorded by Voyager 1 and 2 in the Jovian Magnetosphere.

Article Type: Research Article

Corresponding Author: M. Altaf 1  

Email: altafnig@rediffmail.com

This article has not yet been cited.

M. Altaf 1*,  M. M. Ahmad 2.  

1. Department of CSE (Physics), North Campus University of Kashmir Delina Baramulla, Kashmir, India

2. Department of Physics, NIT Srinagar, Kashmir, India

J. Environ. Nanotechnol. Volume 4, No.1 pp.13-18
ISSN: 2279-0748 eISSN: 2319-5541
ENT 144120.pdf
Download Citation

Reference

Acuna, M. H., Neubuer, F. M. and Ness, N. P. J., Standing Alfvén wave current system at Io: Voyager 1 observations, Geophys. Res., 86(10), 8513-8521 (1981).
doi:10.1029/JA086iA10p08513
Bigg, K., Influence of the Satellite Io on Jupiter's Decametric Emission, Nature, 203(4949), 1008-1010 (1964).
doi:10.1038/2031008a0
Dessler, A. J., Physics of Jovian Magnetosphere Cambridge Press, (1983).
Geertz, C. K. and Deift, P. A., Io's interaction with the magnetosphere, Planet Space Sci., 21(8), 1399-1415 (1973).
doi:10.1016/0032-0633(73)90232-8
Goldreich, P. and Lynden-Bell, D., the Galaxy of Greatest Known Mass, Astrophys. J., 156, 59-61 (1969).
doi:10.1086/180349
Gurnett, D. A., Kurth, W. S. and Scarf, F. L., Auroral Hiss Observed near the Io Plasma Torus, Nature 280(5725), 767-770 (1979).
Gurnett, D. A. and Geertz, C. K. J., Multiple Alfven wave reflections excited by Io: Origin of the Jovian decametric arcs, Geophys. Res. 86(2), 717-722 (1981).
doi:10.1029/JA086iA02p00717
Neubaner, F. M., Nonlinear standing Alfvén wave current system at Io: Theory, J. Geophys. Res., 85(3), 1171-1178 (1980).
doi:10.1029/JA085iA03p01171
Walker, R. and Kivelsen, M. G., Multiply reflected standing Alfven waves in the IO torus: Pioneer 10 observations, Geophys. Res. Lett., 8(12), 1281-1284 (1981).
doi:10.1029/GL008i012p01281
Warwick, J. M., Pearce, J. B., Riddle, A. C., Alexander, J. K., Desch, M. D., Kaiser, M. L., Theiman, J. T., Carr, T. D., Gulkis, S., Bescheit, A., Leblanc, Y., Pedersen, B. M. and Staelin, D. H., Planetary ra- dio astronomy observations from Voyager 2 near Jupiter, Science, 206(8), 991-1002 (1979).
Jacobs, J. A. and Watanabe, T., Atmosph, Amplification of hydromagnetic waves in the magnetosphere by a cyclotron instability process with applications to the theory of hydromagnetic whistlers, J., Terr Physics, 28(2), 235-253 (1966).
doi:10.1016/0021-9169(66)90120-6
Hess, S., Zarka, P. and Mottez, F., Io Jupiter interaction, millisecond bursts and field-aligned potentials, Planet. Space Sci., 55(2), 89–99 (2007b).
doi:10.1016/j.pss.2006.05.016
Hess, S., Zarka, P., Mottez, F. and Ryabov, V. B., Electric potential jumps in the Io-Jupiter flux tube, Planet. Space Sci. 57(1), 23–33 (2009).
doi:10.1016/j.pss.2008.10.006
Das, A. C., and Ip, W. H., Field aligned current and particle acceleration in the near-Io plasma torus, Planet. Space Sci., 48(3), 127–131 (2000).
doi:10.1016/S0032-0633(99)00086-0
Imai, K. L., Wang, and Carr, T. D., Modeling Jupiter's decametric modulation lanes, J. Geophys. Res. 102(A4), 7127–7136 (1997).
doi:10.1029/96JA03960
Imai, K., Riihimaa, J. J., Reyes, F. and Carr, T. D., Measurement of Jupiter's decametric radio source parameters by the modulation lane method, J. Geophys. Res., 107(6), 1081-1089 (2002).
Litvinenko, G. V., Lecacheux, A., Rucker, H. O., Konovalenko, A. A., Ryabov, B. P., Taubenschuss, U., Vinogradov, V. V. and Shaposhnikov, V. E., Modulation structures in the dynamic spectra of Jovian radio emission obtained with high time-frequency resolution, Astron. Astrophys. 493(2), 651–660 (2009).
doi:10.1051/0004-6361:200809676
Tomonori Koshida1, Takayuki Ono, Masahide Iizima and Atsushi Kumamoto, Jovian slow-drift shadow events, J. Geophys. Res., 117(10), 1978–2012 (2012).
doi:10.1029/2012JA018134

>>