Welcome to JENT its Friday 19th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Simplified Synthesis of Multi-walled Carbon Nanotubes from a Botanical Hydrocarbon: Rosmarinus officinails oil


Rosmarinus officinails Oil, a botanical hydrocarbon has been found to be an effective precursor for the synthesis of multi-walled carbon nanotubes. Multi-walled carbon nanotubes were prepared by catalytic decomposition of Rosmarinus officinails oil over well dispersed Fe-Co catalyst impregnated silica support with 20 mL/hr feed rate of carbon source at 650 °C by spray pyrolysis method. The as grown multi-walled carbon nanotubes were characterized by FESEM, HRTEM, XRD and Raman spectroscopy. Raman spectroscopy reveals that as grown nanotubes are well graphitized. The HRTEM images reveal that the tip growth mechanisms of MWNTs with diameter range of 30-40 nm were found. We conclude that the Rosmarinus officinails oil has been found to be valuable precursor for the synthesis of low cost and high quality of MWNTs for large scale production.

Article Type: Research Article

Corresponding Author: S. Karthikeyan 2  

Email: skmush@rediffmail.com

This article has not yet been cited.

S. Mageswari 1,  S. Karthikeyan 2*,  N.Kanakachalam 3.  

1. Department of Chemistry, Vivekanandha College of Engineering for women, Tiruchengode, TN, India.

2, 3. Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, India

J. Environ. Nanotechnol. Volume 3, No.2 pp. 62-68
ISSN: 2279-0748 eISSN: 2319-5541
Download Citation


Afre, R. A., Soga, T., Jimbo, T., Mukul K., Ando, Y., Maheshwar Sharon, Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of natural precursor: Turpentine oil, Chem. Phys. Letts.,414(1-3), 6 (2005). doi:10.1016/j.cplett.2005.08.040

Bower, C., Otto, Z., Wei, Z., Werder, D. J. and Jin, S., Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition, Appl. Phys. Lett.,77(17), 2767-2768 (2000). doi:http://dx.doi.org/10.1063/1.1319529 

Cassell, A., Raymakers, J., Kong, J., Dai, H., Large Scale CVD Synthsis of Single-walled Carbon Nanotubes, J. Phys. Chem.B., 103, 6484 (1999). doi: http://dx.doi.org/10.1021/jp990957s 

Chen, T. T., Liu, Y. M., Sung, Y., Wang, H. T. and Ger, M. D., Simple dip-coating process for the synthsis of small diameter single-walled carbon nanotubes, Mater. Chem. Phys., 97, 511-516 (2006).

Choi, Y. C., Shin, Y. M., Lim, S. C., Bae, D. J., Lee, Y. H., Lee, B. S. and Chung, D. C., Effect of suface morphology of Ni thin film on growth of Aligned car bon nanotubes by micr o-wave plasma enchanced chemical vapor deposition, J. Appl. Phys., 88, 4898-4903 (2000). doi:http://dx.doi.org/10.1063/1.1314614

Downard, A. J., Liu, X. and Baronian, K. H. R., Patterned arrays of vertically aligned carbon nanotube microelectr odes on carbon films prepared by Thermal Chemical Vapor Deposition, Anal. Chem.,80, 8835-8839 (2008). doi:http://dx.doi.org/10.1021/ac801552a.

Fonseca, A., Harnadi, K., Nagy, J. B., Bernaetrs, D., and Lucas, A. A., Optimization of catalytivc production and purification of buckytubes, J. Mol. Cat. A.Chem.,107, 159-168 (1996). doi:http://dx.doi.org/10.1016/1381-1169(95)00211-1 

Ghosh, P., Soga, T., Afre, R. A. and Jimbo, T., Simplified synthesis of single-walled carbon nanotubes from a botanical hydrocar bon: Turpentine oil, J. Alloy. Compd., 462, 289-293 (2008).

Guo, T., Nikoleav, P., Thess, A., D. T. Colbert, D. T. and Smalley, R. E., Catalytic growth of singlewalled nanotubes by laser vaporization, Chem. Phys. Lett., 243, 49 (1995). doi:http://dx.doi.org/10.1016/0009-614(95)00825-O

Hsiou, Y. F., Yang, Y. J., Stobinski, L., Kuo, W. and Chen, C. D., Controlled placement and electrical contact pr operties of individual multiwalled carbon nanotubes on patterned silicon, Appl. Phys. Lett., 84, 984-986 (2004). doi:http://dx.doi.org/10.1063/1.1645985

Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de la Chapelle, M. L., Lefrant, S., Large scale production of single-walled carbon nanotube by the Electric-arc technique, Nature., 388, 786 (1998).

Kamalakaran, R., Terrones, M., Seeger, T., KohlerRedlich, Ph., Ruhle, M., Kim, Y. A., Hayashi, Endo, M., Synthsis of thick and crystalline nanotube arrays by spray pyrolysis, Appl. Phys. Lett.,77, 3385 (2000). doi:http://dx.doi.org/10.1063/1.1327611

Kumar, M., Ando, Y., Camphor- a botanical precursor producing garden of carbon nanotubes, Diamond Relat. Mater.,12, 1845-1850 (2003).

Leonhardt, A., Hampel, S., Buchner, B., Synthsis, properties and application of ferromagnetic filled carbon, Chem. Vap. Deposition., 12(6), 380-387 (2006).

Li, W., Zhang, H., Wang, C., Zhang, Y., Xu, L., Zhu, K., Xie, S., Raman characterization of aligned car bon nanotubes pr oduced by ther mal decomposition of hydrocarbon vapor,Appl. Phys. Lett.,70, 2684-2686 (1997). doi:http://dx.doi.org/10.1063/1.118993

Maheshwar Sharon, Mukhopadhyay, K., Krishna, K. M., Fullerenes from camphor: A natural source, Phys. Rev. Lett., 72 (20), 3182 (1994). Maheshwar Sharon, Mukul , Kichambre, P. D., Ando, Y., Xinluo Z hao, Diamond Films Technol., 8, 143 (1998).

Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M., Low temperature synthsis of high purity single walled carbon nanotubes from alcohol, Chem. Phys. Lett.,360, 229-234 (2002). doi:http://dx.doi.org/10.1016/S0009-2614(02)00838-2

Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Ruhle, M., Kroto, H. W. and Walton, D. R. M., Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene based aerosols,Chem. Phys. Lett.,338, 101-107 ((2001). doi:http://dx.doi.org/10.1016/S0009-2614(01)00278-0

Mhlanga, S. D., Kartick, C. M., Robin, C., Michael, J. W. and Neil, J. C., The Effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCo 3 catalysts, Afr. J. Chem., 62, 67 ((2009).

Okazaki, T., Shinohar a, H., Synthsis and characterization of single walled carbon nanotubes by hot filament assisted chemical vapor deposition, Chem. Phys. Lett., 376, 606-611 (2003). doi:http://dx.doi.org/10.1016/S0009-2614(03)01042-X

Singh, C., Shaffer, M. S. P. and Windle, A. H., Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method, Carbon,41, 359-368 (2003).

Sveningsson, M., Morjan, R. E., Nerushev, O. A., Sato, Y., Backstrom, J., Campbell, E. E. B. and Rohmund, F., Raman spectroscopy and fieldemission properties of CVD-grown carbonnanotube films, Appl. Phys. A., 73, 409-418 (2001).

Thostenson, E. T., Ren, Z. F. and Chou, T. W., Advances in the science and technology of carbon nanotubes and their composites:A Review, Compos.sci.Technol.,61,1899-912(2001).

Wei, Y. Y., Eres, G., Merkulov, V. I. and Lowndes, D. H., Effect of catalyst film thicknes on carbon nanotube growth by selective area Chemical Vapor Deposition, Appl. Phys.Lett., 78, 1394-1396 (2001). doi:http://dx.doi.org/10.1063/1.1354658