Welcome to JENT its Friday 19th of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541
CODEN:JENOE2

Growth of Bamboo like Carbon Nanotubes from Brassica Juncea as Natural precursor

Abstract

Bamboo like Carbon Nanotubes with compartments were synthesized using Brassica Juncea over Fe-Mo impregnated alumina support at 650 0c reaction temperature 20ml/hour gas flow rate and at normal pressure under N2 atmosphere. In this experiment we achieved maximum yield of entangled carbon nanotubes from the taken precursor. Morphological and Structural studies have been performed by FESEM, HRTEM and Raman Spectroscopic analysis. We identified the growth of carbon nanotube structures with compartments on the chosen catalytic support material. The diameter of multi-walled carbon nanotubes is found in the range of 60 to 80nm. Tip growth mechanism has been observed from the TEM images. We conclude that the Brassica Juncea material has been found to be valuable precursor for the synthesis of low cost and high quality multi-walled carbon nanotubes for large scale production.

Article Type: Research Article

Corresponding Author: S. Karthikeyan 4  

Email: skmush@rediffmail.com

This article has not yet been cited.

S. Kalaiselvan 1,  M.Karthik 2,  A. Babu Rajendran 3,  S. Karthikeyan 4*.  

1. Department of Chemistry, Hindusthan College of Engineering, Coimbatore, TN, India.

2. CIC Energigune, C/Albert Einstein 48, Spain.

3, 4. Department of Chemistry, Chikkanna Government Arts College, Tirupur, TN, India

J. Environ. Nanotechnol. Volume 3, No.2 pp. 92-100
ISSN: 2279-0748 eISSN: 2319-5541
ENT142071 .pdf
Download Citation

Reference

Afre, R. A., Soga, T., Jimbo, T., Kumar, M., Ando, A. and Sharon, M., Vertically aligned carbon nanotubes at different temperatures by spray pyrolysis techniques, Int. J. Mod Phys. B.,20(29), 4965 (2006). http://dx.doi.org/10.1142/S0217979206035692

Growth Model of BS-CNT nucleation Afre, R. A., Soga, T., Jimbo, T., Kumar, M., Ando, Y. and Sharon, M., Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spr ay pyr olysis of a natural pr ecur sor: Turpentine oil, Chem. Phys. Lett., 414, 10 (2005). http://dx.doi.org/10.1016/j.cplett.2005.08.040

Angulakshmi, V. S., Sivakumar, N. and Karthikeyan, S., Response Surface Methodology for optimizing Process Parameters for Synthesis of Carbon Nanotubes, J. Environ. Nanotechnol., 1(1), 40-45 (2012). http://10.13074/jent.2012.10.121019

Angulakshmi, V. S., Rajasekar, K., Sathiskumar, C. and Karthikeyan, S., Growth of vertically aligned carbon nanotubes by spray pyrolysis using green precursor- methyl ester of Helianthus annuss oil, New Carbon Mater.,28, 284-288 (2013). http://dx.doi.org/10.1016/ S1872-5805(13)60082-7

Angulakshmi, V. S., Sathiskumar, C., Karthik, M. and Karthikeyan, S., Synthesis of Multi-walled Carbon Nanotubes from Glycine Max Oil and Their Potential Applications, J. Environ. Nanotechnol., 2, 101-106 (2013). http://dx.doi.org/10.13074/jent.2013.02.nciset316

Baker, R. T. K., Baker, M. A., Harris, P. S., Feates, F. S, and Waite, R. J., Nucleation and growth of carbon deposits fr om the nickel catalysed decomposition of acetylene, J. Catal.,26, 51-62 (1972). http://dx.doi.org/10.1016/0021-9517(72)90032-2

Bethune, D. S., Kiang, C. H., Devries, M. S., Gorman, G., Savoy, R., Vazquez, J. and Beyers, R., Cobaltcatalysed growth of carbon nanotubes with singleatomic- layer walls, Nature., 363, 605-607 (1993). http://dx.doi.org/10.1038/363605a0

Chernozatonskii, L. A., Gulyaev, Y. V., Kosakovskaja, Z. J., Sinitsyn, N. I., Torgashov, G. V., Zakharchenko, Y. F., Fedorov, E. A. and Valchuk, V. P., Electron field emission from nanofilament carbon films, Chem. Phys. Lett., 233(1-2), 63-68, (1995). http://dx.doi.org/10.1016/0009-2614(94)01418-U

Collins, P. G., Hersam, M., Arnold, M., Martel, R. and Avouris, P., Current saturation and electrical breakdown in multiwalled carbon nanotubes, Phys. Rev. Lett., 86, 3128 (2001). PMID:11290124 [PubMed]

Eklund, P., Pradhan, B., Kim, U., Xiong, Q., Fischer, J., Friedman, A., Holloway, B., Jordan, K. and Smith, M., Large-scale production of singlewalled carbon nanotubes using ultrafast pulses from a free electron laser, Nano. Lett., 2, 561 (2002). http://dx.doi.org/10.1021/nl025515y

Govindaraj, A. and Rao, C. N. R., Organometallic precursor route to carbon nanotubes, Pure Appl. Chem.,74, 1571 (2002). http://dx.doi.org/10.1351/pac200274091571

Ghosh, P., Afre, R. A., Soga, T. and Jimbo, T. A simple method of pr oducingsingle-walled carbon nanotubes from a natural precursor: Eucalyptus oil, Mater. Lett., 61(17), 3768-3770 (2007). http://dx.doi.org/10.1016/j.matlet.2006.12.030

Iijima, S., Helical microtubules of graphitic carbon, Nature., 354 (6348), 56-58 (1991). http://dx.doi.org/10.1038/354056a0

Iijima, S. and Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter, Nature., 363, 603-605 (1993). http://dx.doi.org/10.1038/363603a0

Karthikeyan, S. and Mahalingam, P., Studies of yield and nature of multi-walled carbon nanotubes synthesized by spray pyrolysis of pine Oil at different temperatures, Int. J. Nanotechnol. Appl., 4, 189-197 (2010).

Karthikeyan, S., and Mahalingam, P., Synthesis and characterization of multi-walled carbon nanotubes from biodiesel oil: green nanotechnology route, Int. J. Green Nanotechnol. Phys. Chem., 2, 39-46(2010). http://dx.doi.org/10.1080/19430876.2010.532421

Karthikeyan, S., Kalaiselvan, S., Manorangitham, D. and Maragathamani, S., Morphology and Structural Studies Of Multi-Walled Carbon nanotubes by Spray Pyrolysis using Madhuca Longifolia Oil, J. Environ. Nanotechnol., 2, 15-20 (2013). http://dx.doi.org/10.13074/jent.2013.12.132040 

Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N. and Treacy, M. M. J., Young-modulus of single-walled nanotubes, Phys. Rev. B: Condens. Matter., 58, 14013 (1998). http://dx.doi.org/10.1103/PhysRevB.58.14013

Kumar, M. and Ando, Y., A simple method of producing aligned carbon nanotubes from an unconventional precursor - Camphor, Chem. Phys. Lett.,374, 521-526 (1993). http://dx.doi.org/10.1016/S0009-2614(03)00742-5

Kumar, R., Tiwari, R. S. and Srivastava, O.N., Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil, Nanoscale Res. Lett., 6, 92-97 (2011). http://dx.doi.org/10.1186/1556-276X-6-92L

Lee, C. J., Lyu, S. C., Kim, H. W., Park, C. Y. and Yang, C. W., Large-scale production of aligned carbon nanotubes by the vapor phase growth method, Chem. Phys. Lett., 359, 109 (2002). http://dx.doi.org/10.1016/S0009-2614(02)00648-6 

Lee, C. J. and Park, J., Growth model of bambooshaped carbon nanotubes by thermal chemical vapor deposition, Appl. Phys. Lett., 77, 3397 (2000). http://dx.doi.org/10.1063/1.1320851

Li, X., Zhu, H., Ci, L., Xu, C., Mao, Z., Wei, B., Liang, J. and Wu, D., Hydrogen uptake by graphitized multi-walled carbon nanotubes under moderate pressure and at room temperature, Carbon., 39(15), 2077-2079 (2001).http://dx.doi.org/10.1016/S0008- 6223(01)00183-X

Li, W. Z., Wen, G., Tu, Y. and Ren, Z. F., Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition, Chem. Phys. Lett., 355(3-4), 141-149 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00032-X

Li, W. Z., Wen, J. G., Tu, Y. and Ren, Z. F., Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition, Appl. Phys. A., 73(2), 259-264 (2001). http://dx.doi.org/10.1007/s003390100916

Martel, A. R., Derycke, V., Appenzeller, J., Carbon nanotube transistors and logic Circuits, Physica B: Condens. Matter., 323(1-4), 6-14 (2002). http://dx.doi.org/10.1016/S0921-4526(02)00870-0

Matveev, A. T., Golberg, D., Novikov, V. P., Klimkovich, L. L. and Bando, Y., Synthesis of carbon nanotubes below room temperature, Carbon., 39(1), 155-157 (2001). http://dx.doi.org/10.1016/S0008-6223(01)00007-0

Mahalingam, P., Parasuram, B., Maiyalagan, T. and Sundaram, S., Chemical Methods for Purification of Carbon Nanotubes- A Review, J. Environ. Nanotechnol., 1, 53-61 (2012).

Mageswari, S., Jafar Ahamed, A. and Karthikeyan, S., Effect of Temperature and Flow Rate on the Yield of Multiwalled Carbon Nanotubes by Spray Pyrolysis using Cymbopogen flexsuous Oil, J. Environ. Nanotechnol., 1, 28-31(2012). http://dx.doi.org/10.13074/jent.2012.10.121015 

Murakami, Y., Miyauchi, Y., Chiashi, S. and Maruyama, S., Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates, Chem. Phys. Lett., 377, 49 (2003).

Oberlin, A., Endo, M. and Koyama, T., Filamentous gr owth of carbon through benzene decomposition, J. Cryst. Growth., 32, 335-349 (1976). http://dx.doi.org/10.1016/0022-0248(76)90115-9

Paul, S. and Samdarshi, S. K., A green precursor for carbon nanotube synthesis, New Carbon Mater., 26, 85-88 (2011). http://dx.doi.org/10.1016/S1872-5805(11)60068-1

Pitamber Mahanandia, Jorg, Schneider, J., Martin Engel, Ber nd Stühn, Somanahalli, V., Subramanyam and Karunakar Nanda Studies towards synthesis, evolution and alignment char acter istics of dense, millimeter long multiwalled carbon nanotube arrays, Beilstein J. Nanotechnol., 2,293-301 (2011). http://dx.doi.org/10.3762/bjnano.2.34

Qian, D., and Dickey, E. C., In-situ transmission electron microscopy studies of Polymer - carbon nanotube composite deformation, J. Microsc. Oxford., 204, 39 (2001).

Saito, Y., Nishikubo, K., Kawabata, K. and Matsumoto, T., Carbon nanocapsules and single-layered nanotubes pr oduced with platinum gr oup metals Ru, Rh, Pd, Os, Ir, Pt) by arc discharge, J. Appl. Phys., 80, 3062 (1996). http://dx.doi.org/10.1063/1.363166

Suriani, A. B., Azira, A. A., Nik, S. F., Md Nor, R. and Rusop, M., Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett.,63, 2704-2706 (2009). http://dx.doi.org/10.1109/ISBEIA.2012.6422908

Yuan, L., Saito, K., Pan, C., Williams, F. and Gordon, A., Nanotubes from methane flames, Chem. Phys. Lett., 340, 237 (2001). http://dx.doi.org/10.1016/S0009-2614(01)00435-3

>>