Welcome to JENT its Monday 22nd of January 2018

Journal of Environmental Nanotechnology

(A Quarterly Peer-reviewed and Refereed International Journal)
ISSN(Print):2279-07 48; ISSN(Online):2319-5541

Whistler-mode chorus emissions observed at Nanital (L= 1.16)


Observations of whistler-mode chorus emissions recorded at Nanital (190 02/ N, 14.9o 45/ E, L = 1.16) between 2200 and 0315 hours IST on 13 May and 8 June 1970 has been reported. The detailed spectral analysis of recorded chorus emissions shows that the chorus element originates from upper edge of the hiss band. To explain the observed dynamic spectra of these chorus emissions, a possible generation mechanism is presented on the non linear theory. It is observed that the seeds of chorus emissions with rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude. On the basis of this theory, the frequency sweep rate of chorus emission is computed and compared with that of our experimentally observed values, which in general shows good agreement.

Article Type: Research Article

Corresponding Author: M. Altaf 1  

Email: altafnig@rediffmail.com

This article has not yet been cited.

M. Altaf 1*,  M.M. Ahmad 2,  J.M. Banday 3.  

1, 2. Department of Physics, National Institute of Technology, Srinagar, Kashmir, India.

3. Department of Civil engineering, National Institute of Technology, Srinagar, Kashmir, India.

J. Environ. Nanotechnol. Volume 2, No.3 pp. 29-35
ISSN: 2279-0748 eISSN: 2319-5541
Download Citation


Bortnik, J., Thorne, R.M. and Meredith, N.P., The unexpected origin of plasma spheric his from discrete chorus emissions, Nature., 452, 62 (2008).http://dx.doi.org/10.1038/nature06741

Burtis, W.J. and Helliwell, R.A., Magnetospheric chorus: occurrence pattern and normalized
frequency, Planet. Space Sci., 24, 1007 (1976).http://dx.doi.org/10.1016/0032-0633(76)90119-7

Carpenter, D.L. and Anderson, R.R., An ISEE/ whistler model of equatorial density in the
magnetosphere, J. Geophys. Res., 97, 1097 (1992).http://dx.doi.org/10.1029/91JA01548

Chum, J., Santolik, O., Breneman, A.W., Kletzing, C.A., Gurnett, D.A. and Pickett, J.S., Chorus source properties that produce time shifts and frequency range differences observed on different cluster spacecraft, J. Geophys. Res., 112 A 06206 (2007).http://doi: 10 1029/ 2006JA012061.

Hattori, K. and Hayakawa, M., Consideration of dynamic spectra and direction finding results
of hiss-triggered chorus emissions, Proc. NIPR Symp. Upper Atmos. Phys., 7, 40 (1994).

Hattori, K., Hayakawa, M., Lagoutte, D., Parrot, M. and Lefeuvre, F., Further evidence of
triggered chorus emissions from wavelet in the hiss band Planet, Space Sci., 39, 1465 (1991).http://dx.doi.org/10.1016/0032-0633(91)90075-L

Helliwell, R., Whistlers and related ionospheric phenomena, J. Geophys. Res., 72, 4273

Helliwell, R.A., Whistler and Related Ionospheric Phenomena (Stanford, C.A, USA: Stanford
University Press) 1965,

Hikishima, M., Yagitani, S., Omura, Y. and Nagano, I., Full particle simulation of whistlermode rising chorus emissions in the magnetosphere, J. Geophys. Res., 114 A01203
(2009). http://doi.1029/2008JA013625.

Katoh, Y. and Omura, Y., A study of generation mechanism of VLF triggered emissions by selfconsistent particle code, J. Geophys. Res., 111, A12207 (2006). http://doi: 10. 1029/2006JA011704.

Katoh, Y. and Omura, Y., Computer simulation of chorus wave generation in the earths inner
magnetosphere, Geophys. Res. Lett., 34, L03102 (2007). http://doi: 10. 1029/2006GL028594.

Lauben, D.S., Inan, U.S., Bell, T.F. and Gurnett, D.A., Source characterizations of ELF/VLF
chorus, J. Geophys Res., 107, A12 1429 (2002). http://doi: 10. 1029/2000JA 003019.

Lauben, D.S., Inan, U.S., Bell, T.F., Kirchner, D.L., Hospodarsky, S.B. and Pickett, J.S., VLF chorus emission observed by POLAR during the January 10, 1997 magnetic cloud, Geophys. Res. Lett., 25, 2995 (1998).http://dx.doi.org/10.1029/98GL01425

Meredith, N.P., Horne, R.B. and Anderson, R.R., Substorm dependence on chorus amplitudes: implications for the acceleration of electrons to relativistic energies, J. Geophys Res., 106, 13165 (2001).http://dx.doi.org/10.1029/2000JA900156

Nunn, D., A self-consistent theory of triggered VLF emissions, Planet.
Space Sci., 22, 349 (1974). http://dx.doi.org/10.1016/0032-0633(74)90070-1

Nunn, D., Omura, Y., Matsumoto, H., Nagano, I. and Yagitani, S., The numerical simulation of VLF chorus and discrete emissions observedon Geotail satellite using a Vlasov code, J.
Geophys. Res., 102, 27083 (1997).http://dx.doi.org/10.1029/97JA02518

Omura, Y. and Matsumoto, H., Computer simulations of basic process of coherent
whistler wave-particle interactions in the magnetosphere, J. Geophys. Res., 87, A6 4435

Omura, Y. and Summers, D., Computer simulation of relativistic whistler-mode wave-particle
interactions, Phys. Plasma., 11, 3530 (2004).http://dx.doi.org/10.1063/1.1757457

Omura, Y., Furuya, N. and Summers, D., Relativistic acceleration of resonant electrons
by coherent whistler mode waves in a dipole magnetic field, J. Geophys. Res., 112, A06236
(2007). http://doi. 1029/2006JA012243.

Omura, Y., Hikishima, M., Katoh, Y., Summers, D. and Yagitani, S., Nonlinear mechanisms
of lower band and upper band VLF chorus emissions in the magnetosphere, J. Geophys
Res., 114 A07217 (2009). http://doi: 10.1029/ 2009JA014206.

Omura, Y., Katoh, Y. and Summer, D., Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113 A04223 (2008). http://doi: 10. 1029/2007JA012622.

Patel, R.P., Singh, R.P., Singh, A.K., Gwal, A.K. and Hammar, D., Observation of very low
frequency emission at Indian Antarctic station Maitri Pramana, J.Phys., 61, 4773 (2003).

Santolik, O., Gernet, D.A., Pickett, J.S., Parrot, M. and Cornilleau-Wehrlin, N., A mocroscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys. Res. Lett., 31 L02801 (2004). http://doi: 10. 1029/2003 GL018757.

Santolik, O., Gernet, D.A., Pickett, J.S., Parrot, M. and Cornilleau-Wehrlin, N., Central
position of the source region of storm-time chorus planet, Space Sci., 53, 299

Santolik, O., New results of investigations of whistle-mode chorus emissions nonlin, Process. Geophys., 15, 621 (2008).http://dx.doi.org/10.5194/npg-15-621-2008

Santolik, O., Parrot, M. and Lefeuvre, F., Singularvalue decomposition methods for
wave propagation analysis, Radio Sci., 38 1 1010 (2003). http://doi: 10. 1029/2000RS002523.

Sazhin, S.S. and Hayakawa, M., Magnetospheric chorus emission, Planet Space Sci., 40, 681 (1992).http://dx.doi.org/10.1016/0032-0633(92)90009-D

Singh, A.K. and Ronnmark, K., Generation mechanism for VLF chorus emissions observed
at a low-latitude ground station, Ann. Geophys., 22, 2849 (2004).http://dx.doi.org/10.5194/angeo-22-2849-2004

Singh, A.K., Singh, S.B. and Patel, R.P., An explanation of the observation of whistlermode
chorus emissions at the Indian Antarctic station, Maitri (L = 4.5), Phy. Scr. 81, 2010.

Singh, K.K., Singh, J., Patel, R.P., Singh, A.K., Singh, R.P., Singh, R. and Ganai, P.A., Quasi periodic VLF emissions observed during daytime at a low latitude Indian ground station
Jammu, J. Earth Syst. Sci., 118, 31 (2009).

Singh, R., Patel, R.P., Singh, R.P. and Lalmani., An experimental study of hiss triggered chorus emission at low latitudes, Earth Planets space., 52, 37 (2000).

Singh, R.P., Patel, R.P., Singh, A.K., Effects of solar and magnetic acyivity on VHF scintillations near the equatorial anomaly crest, Ann. Geophys., 22, 2849 (2004).http://dx.doi.org/10.5194/angeo-22-2849-2004

Singh, S.K., Kumar, S. and Gwal, A.K., Daytime very low frequency (VLF) emissions observed at Maotri station Antarctica, Ind. J. Phys., 77, B4451 (2003).

Smirnova, N.A., Fine structure of the ground observed VLF chorus as an indicator of the
wave particle interaction process in the magnetosphere, Planet. Space Sci., 32, 425

Summers, D., Mace, R.L. and Hellberg, M.A., Pitch-angle scattering rates in planetary
magnetospheres, J. Plasma Phys., 71, 3237 (2005).

Thorne, R.M., Obrien, T.P., Shprits, Y.Y., Summers, D. and Horne, R.B., Timescale for
MeV electron microburst loss during geomagnetic storm, J. Geophys. Res., 110
A09202 (2005). http://doi: 10. 1029/2004JA010882.

Trakhtengerts, V.Y., A generation mechanism for chorus emissions, Ann. Geophys., 17,

Trakhtengerts, V.Y., Magnetospheric cyclotron maser: backward wave oscillator generation
regime, J. Geophys. Res., 100, 17205 (1995).http://dx.doi.org/10.1029/95JA00843